Iron and zinc grain density in common wheat grown in Central Asia

被引:234
作者
Morgounov, Alexei
Gomez-Becerra, Hugo Ferney
Abugalieva, Aigul
Dzhunusova, Mira
Yessimbekova, M.
Muminjanov, Hafiz
Zelenskiy, Yu
Ozturk, Levent
Cakmak, Ismail
机构
[1] Kazakh Res & Prod Ctr Farming & Crop Sci, Karasaisky Rayon 040909, Almatinskaya Ob, Kazakhstan
[2] CIMMYT, Reg Off Cent Asia & Caucasus, Alma Ata, Kazakhstan
[3] KASIB, Kazakhstan Siberia Network Spring Wheat Improveme, Astana, Kazakhstan
[4] MIS Seed Co, Kant, Kazakhstan
[5] Tajik Agr Univ, Dushanbe, Tajikistan
[6] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
关键词
breeding; Central Asia; G x E; iron; wheat; zinc;
D O I
10.1007/s10681-006-9321-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Sixty-six spring and winter common wheat genotypes from Central Asian breeding programs were evaluated for grain concentrations of iron (Fe) and zinc (Zn). Iron showed large variation among genotypes, ranging from 25 mg kg(-1) to 56 mg kg(-1) (mean 38 mg kg(-1)). Similarly, Zn concentration varied among genotypes, ranging between 20 mg kg(-1) and 39 mg kg(-1) (mean 28 mg kg(-1)). Spring wheat cultivars possessed higher Fe-grain concentrations than winter wheats. By contrast, winter wheats showed higher Zn-grain concentrations than spring genotypes. Within spring wheat, a strongly significant positive correlation was found between Fe and Zn. Grain protein content was also significantly (P < 0.001) correlated with grain Zn and Fe content. There were strong significantly negative correlations between Fe and plant height, and Fe and glutenin content. Similar correlation coefficients were found for Zn. In winter wheat, significant positive correlations were found between Fe and Zn, and between Zn and sulfur (S). Manganese (Mn) and phosphorus (P) were negatively correlated with both Fe and Zn. The additive main effects and multiplicative interactions (AMMI) analysis of genotype x environment interactions for grain Fe and Zn concentrations showed that genotype effects largely controlled Fe concentration, whereas Zn concentration was almost totally dependent on location effects. Spring wheat genotypes Lutescens 574, and Eritrospermum 78; and winter wheat genotypes Navruz, NA160/HEINEVII/BUC/3/F59.71//GHK, Tacika, DUCULA//VEE/MYNA, and JUP/4/CLLF/3/II14.53/ODIN//CI13431/WA00477, are promising materials for increasing Fe and Zn concentrations in the grain, as well as enhancing the concentration of promoters of Zn bioavailability, such as S-containing amino acids.
引用
收藏
页码:193 / 203
页数:11
相关论文
共 22 条
[1]  
Bouis Howarth E., 2000, Food and Nutrition Bulletin, V21, P374
[2]   Triticum dicoccoides:: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat [J].
Cakmak, I ;
Torun, A ;
Millet, E ;
Feldman, M ;
Fahima, T ;
Korol, A ;
Nevo, E ;
Braun, HJ ;
Özkan, H .
SOIL SCIENCE AND PLANT NUTRITION, 2004, 50 (07) :1047-1054
[3]  
Cakmak I, 2002, ENCY LIFE SUPPORT SY, P1075
[4]   Are synthetic hexaploids a means of increasing grain element concentrations in wheat? [J].
Calderini, DF ;
Ortiz-Monasterio, I .
EUPHYTICA, 2003, 134 (02) :169-178
[5]  
*CIMMYT, 2005, BRIDGE BIOFORTIFIED
[6]  
*CIMMYT, 2005, MIN AGR KAZ SIB BRAN
[7]  
DISTELFELD A, 2006, IN PRESS PHYSL PLANT
[8]   MINERAL-COMPOSITION OF TRITICALE GRAINS AS RELATED TO GRAIN-YIELD AND GRAIN PROTEIN [J].
FEIL, B ;
FOSSATI, D .
CROP SCIENCE, 1995, 35 (05) :1426-1431
[9]   Anemia prevention and control in four central Asian republics and Kazakhstan [J].
Gleason, GR ;
Sharmanov, T .
JOURNAL OF NUTRITION, 2002, 132 (04) :867S-870S
[10]  
*IRRISTAT, 4 3 WIN D