Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors

被引:475
作者
Gao, Xuan P. A. [1 ]
Zheng, Gengfeng [2 ]
Lieber, Charles M. [3 ,4 ]
机构
[1] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[2] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[4] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Nanowire; biosensor; sensitivity; screening; subthreshold; CARBON NANOTUBE TRANSISTORS; PROSTATE-SPECIFIC ANTIGEN; FIELD-EFFECT TRANSISTORS; ELECTRICAL DETECTION; SINGLE-MOLECULE; FLUORESCENCE SPECTROSCOPY; SILICON NANOWIRES; DNA; FUNCTIONALIZATION; BIOCHEMISTRY;
D O I
10.1021/nl9034219
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanowire field-effect transistors (NW-FETs) are emerging as powerful sensors for detection of chemical/biological species with various attractive features including high sensitivity and direct electrical readout. Yet to date there have been limited systematic studies addressing how the fundamental factors of devices affect their sensitivity. Here we demonstrate that the sensitivity of NW-FET sensors can be exponentially enhanced in the subthreshold regime where the gating effect of molecules bound on a surface is the most effective due to the reduced screening of carriers in NWs. This principle is exemplified in both pH and protein sensing experiments where the operational mode of NW-FET biosensors was tuned by electrolyte gating. The lowest charge detectable by NW-FET sensors working under different operational modes is also estimated. Our work shows that optimization of NW-FET structure and operating conditions can provide significant enhancement and fundamental understanding for the sensitivity limits of NW-FET sensors.
引用
收藏
页码:547 / 552
页数:6
相关论文
共 29 条
[1]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[2]  
ARMBRUSTER DA, 1993, CLIN CHEM, V39, P181
[3]   Enzyme-coated carbon nanotubes as single-molecule biosensors [J].
Besteman, K ;
Lee, JO ;
Wiertz, FGM ;
Heering, HA ;
Dekker, C .
NANO LETTERS, 2003, 3 (06) :727-730
[4]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[5]   Mechanism and Optimization of pH Sensing Using SnO2 Nanobelt Field Effect Transistors [J].
Cheng, Yi ;
Xiong, P. ;
Yun, C. Steven ;
Strouse, G. F. ;
Zheng, J. P. ;
Yang, R. S. ;
Wang, Z. L. .
NANO LETTERS, 2008, 8 (12) :4179-4184
[6]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[7]   Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J].
Hahm, J ;
Lieber, CM .
NANO LETTERS, 2004, 4 (01) :51-54
[8]   Identifying the mechanism of biosensing with carbon nanotube transistors [J].
Heller, Iddo ;
Janssens, Anne M. ;
Mannik, Jaan ;
Minot, Ethan D. ;
Lemay, Serge G. ;
Dekker, Cees .
NANO LETTERS, 2008, 8 (02) :591-595
[9]   Optimizing the Signal-to-Noise Ratio for Biosensing with Carbon Nanotube Transistors [J].
Heller, Iddo ;
Mannik, Jaan ;
Lemay, Serge G. ;
Dekker, Cees .
NANO LETTERS, 2009, 9 (01) :377-382
[10]   20 YEARS OF ION-SELECTIVE FIELD-EFFECT TRANSISTORS [J].
JANATA, J .
ANALYST, 1994, 119 (11) :2275-2278