A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system

被引:148
作者
MacGurn, Jason A.
Cox, Jeffery S. [1 ]
机构
[1] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Program Microbial Pathogenesis & Host Def, San Francisco, CA 94143 USA
关键词
D O I
10.1128/IAI.01872-06
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
After phagocytosis, the intracellular pathogen Mycobacterium tuberculosis arrests the progression of the nascent phagosome into a phagolysosome, allowing for replication in a compartment that resembles early endosomes. To better understand the molecular mechanisms that govern phagosome maturation arrest, we performed a visual screen on a set of M. tuberculosis mutants specifically attenuated for growth in mice to identify strains that failed to arrest phagosome maturation and trafficked to late phagosomal compartments. We identified 10 such mutants that could be partitioned into two classes based on the kinetics of trafficking. Importantly, four of these mutants harbor mutations in genes that encode components of the ESX-1 secretion system, a pathway critical for M. tuberculosis virulence. Although ESX-1 is required, the known ESX-1 secreted proteins are dispensable for phagosome maturation arrest, suggesting that a novel effector required for phagosome maturation arrest is secreted by ESX-1. Other mutants identified in this screen had mutations in genes involved in lipid synthesis and secretion and in molybdopterin biosynthesis, as well as in genes with unknown functions. Most of these trafficking mutants exhibited a corresponding growth defect during macrophage infection, but two mutants grew like wild-type M. tuberculosis during macrophage infection. Our results support the emerging consensus that multiple factors from M. tuberculosis, including the ESX-1 secretion system, are involved in modulating trafficking within the host.
引用
收藏
页码:2668 / 2678
页数:11
相关论文
共 43 条
[1]   RESPONSE OF CULTURED MACROPHAGES TO MYCOBACTERIUM-TUBERCULOSIS, WITH OBSERVATIONS ON FUSION OF LYSOSOMES WITH PHAGOSOMES [J].
ARMSTRONG, JA ;
HART, PD .
JOURNAL OF EXPERIMENTAL MEDICINE, 1971, 134 (03) :713-+
[2]   Comparative genomics of BCG vaccines by whole-genome DNA microarray [J].
Behr, MA ;
Wilson, MA ;
Gill, WP ;
Salamon, H ;
Schoolnik, GK ;
Rane, S ;
Small, PM .
SCIENCE, 1999, 284 (5419) :1520-1523
[3]   A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10) [J].
Berthet, FX ;
Rasmussen, PB ;
Rosenkrands, I ;
Andersen, P ;
Gicquel, B .
MICROBIOLOGY-UK, 1998, 144 :3195-3203
[4]   A tale of two lipids:: Mycobacterium tuberculosis phagosome maturation arrest [J].
Chua, J ;
Vergne, I ;
Master, S ;
Deretic, V .
CURRENT OPINION IN MICROBIOLOGY, 2004, 7 (01) :71-77
[5]   CHARACTERIZATION OF THE MYCOBACTERIUM-TUBERCULOSIS PHAGOSOME AND EVIDENCE THAT PHAGOSOMAL MATURATION IS INHIBITED [J].
CLEMENS, DL ;
HORWITZ, MA .
JOURNAL OF EXPERIMENTAL MEDICINE, 1995, 181 (01) :257-270
[6]   The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin [J].
Clemens, DL ;
Horwitz, MA .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (04) :1349-1355
[7]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[8]   MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence [J].
Converse, SE ;
Mougous, JD ;
Leavell, MD ;
Leary, JA ;
Bertozzi, CR ;
Cox, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :6121-6126
[9]   Complex lipid determine tissue specific replication of Mycobacterium tuberculosis in mice [J].
Cox, JS ;
Chen, B ;
McNeil, M ;
Jacobs, WR .
NATURE, 1999, 402 (6757) :79-83
[10]   The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide [J].
Darwin, KH ;
Ehrt, S ;
Gutierrez-Ramos, JC ;
Weich, N ;
Nathan, CF .
SCIENCE, 2003, 302 (5652) :1963-1966