Unstable periodic orbits in human cardiac rhythms

被引:31
作者
Narayanan, K [1 ]
Govindan, RB [1 ]
Gopinathan, MS [1 ]
机构
[1] Indian Inst Technol, Dept Chem, Madras 600036, Tamil Nadu, India
关键词
D O I
10.1103/PhysRevE.57.4594
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Unstable periodic orbits (UPOs) extracted from experimental electrocardiograph signals are reported for normal and pathological human cardiac rhythms. The periodicity and distribution of the orbits on the chaotic attractor are found to be indicative of the state of health of the cardiac system. The normal cardiac system is characterized by three to four UPOs with typical periodicities and intensities. However, pathological conditions such as premature ventricular contraction, atrio ventricular block, ventricular tachy arrhythmia, and ventricular fibrillation have UPOs whose periodicity and intensity distribution are quite distinct from those of the healthy cases and are characteristic of the pathological conditions. Eigenvalues and the largest positive Lyapunov exponent value for the UPOs are also reported. The UPOs are shown to be insensitive to the embedding dimension and the present UFO analysis is demonstrated to be reliable by the method of surrogate analysis.
引用
收藏
页码:4594 / 4603
页数:10
相关论文
共 44 条
[1]   SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM [J].
ALBANO, AM ;
MUENCH, J ;
SCHWARTZ, C ;
MEES, AI ;
RAPP, PE .
PHYSICAL REVIEW A, 1988, 38 (06) :3017-3026
[2]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[3]   IS THE NORMAL HEART A PERIODIC OSCILLATOR [J].
BABLOYANTZ, A ;
DESTEXHE, A .
BIOLOGICAL CYBERNETICS, 1988, 58 (03) :203-211
[4]   DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS [J].
BADII, R ;
BROGGI, G ;
DERIGHETTI, B ;
RAVANI, M ;
CILIBERTO, S ;
POLITI, A ;
RUBIO, MA .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :979-982
[5]   PROGRESS IN THE ANALYSIS OF EXPERIMENTAL CHAOS THROUGH PERIODIC-ORBITS [J].
BADII, R ;
BRUN, E ;
FINARDI, M ;
FLEPP, L ;
HOLZNER, R ;
PARISI, J ;
REYL, C ;
SIMONET, J .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1389-1415
[6]  
CASSELEGGIO A, 1995, CHAOS SOLITON FRACT, V5, P713
[7]   INVARIANT MEASUREMENT OF STRANGE SETS IN TERMS OF CYCLES [J].
CVITANOVIC, P .
PHYSICAL REVIEW LETTERS, 1988, 61 (24) :2729-2732
[8]   EXPERIMENTAL CONTROL OF CHAOS [J].
DITTO, WL ;
RAUSEO, SN ;
SPANO, ML .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3211-3214
[9]   CORRELATION-FUNCTIONS IN CHAOTIC SYSTEMS FROM PERIODIC-ORBITS [J].
ECKHARDT, B ;
GROSSMANN, S .
PHYSICAL REVIEW E, 1994, 50 (06) :4571-4576
[10]  
FRAEDRICH K, 1993, PHYSICA D, V65, P393