Antimicrobial Susceptibility Testing Using High Surface-to-Volume Ratio Microchannels

被引:118
作者
Chen, Chia Hsiang [1 ]
Lu, Yi [1 ]
Sin, Mandy L. Y. [1 ]
Mach, Kathleen E. [4 ]
Zhang, Donna D. [2 ]
Gau, Vincent [5 ]
Liao, Joseph C. [4 ]
Wong, Pak Kin [1 ,3 ]
机构
[1] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ 85721 USA
[3] Univ Arizona, Biomed Engn & Bio5 Inst, Tucson, AZ 85721 USA
[4] Stanford Univ, Dept Urol, Stanford, CA 94305 USA
[5] GeneFluidics Inc, Monterey Pk, CA 91754 USA
基金
美国国家科学基金会;
关键词
ANTIBIOTIC SUSCEPTIBILITY; CELL-CULTURE; ESCHERICHIA-COLI; IMPEDANCE SPECTROSCOPY; GROWTH; RESISTANCE; BIOSENSOR; BACTERIA;
D O I
10.1021/ac9022764
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study reports the use of microfluidics, which intrinsically has a large surface-to-volume ratio, toward rapid antimicrobial susceptibility testing at the point of care. By observing the growth of uropathogenic Escherichia coli in gas permeable polymeric microchannels with different dimensions, we demonstrate that the large surface-to-volume ratio of microfluidic systems facilitates rapid growth of bacteria. For microchannels with 250 mu m or less in depth, the effective oxygenation can sustain the growth of E. coli to over 10(9) cfu/mL without external agitation or oxygenation, which eliminates the requirement of bulky instrumentation and facilitates rapid bacterial growth for antimicrobial susceptibility testing at the point of care. ne applicability of microfluidic rapid antimicrobial susceptibility testing is demonstrated in culture media and in urine with clinical bacterial isolates that have different antimicrobial resistance profiles. The antimicrobial resistance pattern can be determined as rapidly as 2 h compared to days in standard clinical procedures facilitating diagnostics at the point of care.
引用
收藏
页码:1012 / 1019
页数:8
相关论文
共 43 条
[1]  
Atlas RM, 1997, HDB MICROBIOLOGICAL
[2]   Long-term monitoring of bacteria undergoing programmed population control in a microchemostat [J].
Balagaddé, FK ;
You, LC ;
Hansen, CL ;
Arnold, FH ;
Quake, SR .
SCIENCE, 2005, 309 (5731) :137-140
[3]  
[Balows A. Canalco inc. Canalco inc.], 1974, CURRENT TECHNIQUES A
[4]  
BAUER AW, 1966, AM J CLIN PATHOL, V45, P493
[5]   Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics [J].
Boedicker, James Q. ;
Li, Liang ;
Kline, Timothy R. ;
Ismagilov, Rustem F. .
LAB ON A CHIP, 2008, 8 (08) :1265-1272
[6]   Microfabrication technology for vascularized tissue engineering [J].
Borenstein, JT ;
Terai, H ;
King, KR ;
Weinberg, EJ ;
Kaazempur-Mofrad, MR ;
Vacanti, JP .
BIOMEDICAL MICRODEVICES, 2002, 4 (03) :167-175
[7]   Diffusion of gases in silicone polymers: Molecular dynamics simulations [J].
Charati, SG ;
Stern, SA .
MACROMOLECULES, 1998, 31 (16) :5529-5535
[8]   Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices [J].
Cheng, Xuanhong ;
Liu, Yi-shao ;
Irimia, Daniel ;
Demirci, Utkan ;
Yang, Liju ;
Zamir, Lee ;
Rodriguez, William R. ;
Toner, Mehmet ;
Bashir, Rashid .
LAB ON A CHIP, 2007, 7 (06) :746-755
[9]   AUTOMATIC RADIOMETRIC MEASUREMENT OF ANTIBIOTIC EFFECT ON BACTERIAL GROWTH [J].
DEBLANC, HJ ;
WAGNER, HN ;
CHARACHE, P .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1972, 22 (05) :360-+
[10]   Rapid antibiotic susceptibility testing via electrochemical measurement of ferricyanide reduction by Escherichia coli and Clostridium sporogenes [J].
Ertl, P ;
Robello, E ;
Battaglini, F ;
Mikkelsen, SR .
ANALYTICAL CHEMISTRY, 2000, 72 (20) :4957-4964