Computation of dendritic microstructures using a level set method

被引:148
作者
Kim, YT
Goldenfeld, N
Dantzig, J
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 02期
关键词
D O I
10.1103/PhysRevE.62.2471
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compute time-dependent solutions of the sharp-interface model of dendritic solidification in two dimensions by using a level set method. The steady-state results are in agreement with solvability theory. Solutions obtained from the level set algorithm are compared with dendritic growth simulations performed using a phase-field model and the two methods are found to give equivalent results. Furthermore, we perform simulations with unequal diffusivities in the solid and liquid phases and find reasonable agreement with the available theory.
引用
收藏
页码:2471 / 2474
页数:4
相关论文
共 28 条
[1]   VARIATIONAL ALGORITHMS AND PATTERN-FORMATION IN DENDRITIC SOLIDIFICATION [J].
ALMGREN, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (02) :337-354
[2]   Second-order phase field asymptotics for unequal conductivities [J].
Almgren, RF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (06) :2086-2107
[3]   PREDICTIONS OF DENDRITIC GROWTH-RATES IN THE LINEARIZED SOLVABILITY THEORY [J].
BARBIERI, A ;
LANGER, JS .
PHYSICAL REVIEW A, 1989, 39 (10) :5314-5325
[4]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[5]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[6]   DIFFUSE INTERFACE MODEL OF DIFFUSION-LIMITED CRYSTAL-GROWTH [J].
COLLINS, JB ;
LEVINE, H .
PHYSICAL REVIEW B, 1985, 31 (09) :6119-6122
[7]  
GAGINALP G, 1992, EVOLUTION PHASE BOUN, V1, P1
[8]   FREE DENDRITIC GROWTH [J].
GLICKSMAN, ME .
MATERIALS SCIENCE AND ENGINEERING, 1984, 65 (01) :45-55
[9]   A hybrid method for moving interface problems with application to the Hele-Shaw flow [J].
Hou, TY ;
Li, ZL ;
Osher, S ;
Zhao, HK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 134 (02) :236-252
[10]   FRACTAL AND COMPACT GROWTH MORPHOLOGIES IN-PHASE TRANSITIONS WITH DIFFUSION TRANSPORT [J].
IHLE, T ;
MULLERKRUMBHAAR, H .
PHYSICAL REVIEW E, 1994, 49 (04) :2972-2991