Signaling activation and repression of RNA polymerase II transcription in yeast

被引:24
作者
Reece, RJ
Platt, A
机构
[1] School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Manchester M13 9PT, Oxford Road
关键词
D O I
10.1002/bies.950191110
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activators of RNA polymerase II transcription possess distinct and separable DNA-binding and transcriptional activation domains. They are thought to function by binding to specific sites on DNA and interacting with proteins (transcription factors) binding near to the transcriptional start site of a gene. The ability of these proteins to activate transcription is a highly regulated process, with activation only occurring under specific conditions to ensure proper timing and levels of target gene expression. Such regulation modulates the ability of transcription factors either to bind DNA or to interact with the transcriptional machinery. Here we discuss recent advances in our understanding of these mechanisms of transcriptional regulation in yeast.
引用
收藏
页码:1001 / 1010
页数:10
相关论文
共 70 条
[1]   MOT1, A GLOBAL REPRESSOR OF RNA-POLYMERASE-II TRANSCRIPTION, INHIBITS TBP BINDING TO DNA BY AN ATP-DEPENDENT MECHANISM [J].
AUBLE, DT ;
HANSEN, KE ;
MUELLER, CGF ;
LANE, WS ;
THORNER, J ;
HAHN, S .
GENES & DEVELOPMENT, 1994, 8 (16) :1920-1934
[2]   The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter [J].
Barbaric, S ;
Munsterkotter, M ;
Svaren, J ;
Horz, W .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4479-4486
[3]  
BHAT PJ, 1990, GENETICS, V125, P281
[4]  
BHAT PJ, 1991, GENETICS, V128, P233
[5]   OVERPRODUCTION OF THE GAL1 OR GAL3 PROTEIN CAUSES GALACTOSE-INDEPENDENT ACTIVATION OF THE GAL4 PROTEIN - EVIDENCE FOR A NEW MODEL OF INDUCTION FOR THE YEAST GAL MEL REGULON [J].
BHAT, PJ ;
HOPPER, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (06) :2701-2707
[6]   Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae [J].
Blank, TE ;
Woods, MP ;
Lebo, CM ;
Xin, P ;
Hopper, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (05) :2566-2575
[7]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[8]   GALACTOSE REGULATION IN SACCHAROMYCES-CEREVISIAE - ENZYMES ENCODED BY THE GAL7, 10, 1 CLUSTER ARE COORDINATELY CONTROLLED AND SEPARATELY TRANSLATED [J].
BROACH, JR .
JOURNAL OF MOLECULAR BIOLOGY, 1979, 131 (01) :41-53
[9]   Assembly of the isomerized TFIIA-TFIID-TATA ternary complex is necessary and sufficient for gene activation [J].
Chi, TH ;
Carey, M .
GENES & DEVELOPMENT, 1996, 10 (20) :2540-2550
[10]   THE GLOBAL TRANSCRIPTIONAL REGULATORS, SSN6 AND TUP1, PLAY DISTINCT ROLES IN THE ESTABLISHMENT OF A REPRESSIVE CHROMATIN STRUCTURE [J].
COOPER, JP ;
ROTH, SY ;
SIMPSON, RT .
GENES & DEVELOPMENT, 1994, 8 (12) :1400-1410