Neuronal nitric oxide synthase modulates rat renal microvascular function

被引:114
作者
Ichihara, A [1 ]
Inscho, EW [1 ]
Imig, JD [1 ]
Navar, LG [1 ]
机构
[1] Tulane Univ, Sch Med, Dept Physiol, New Orleans, LA 70112 USA
关键词
renal microcirculation; autoregulation; N-w-nitro-L-arginine; S-methyl-L-thiocitrulline; angiotensin II;
D O I
10.1152/ajprenal.1998.274.3.F516
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
This study was performed to determine the influence of neuronal nitric oxide synthase (nNOS) on renal arteriolar tone under conditions of normal, interrupted, and increased volume delivery to the macula densa segment and on the microvascular responses to angiotensin II (ANG II). Experiments were performed in vitro on afferent (21.2 +/- 0.2 mu m) and efferent (18.5 +/- 0.2 mu m) arterioles of kidneys harvested from male Sprague-Dawley rats, using the blood-perfused juxtamedullary nephron technique. Superfusion with the specific nNOS inhibitor, S-methyl-L-thiocitrulline (L-SMTC), decreased afferent and efferent arteriolar diameters, and these decreases in arteriolar diameters were prevented by interruption of distal volume delivery by papillectomy. When 10 mM acetazolamide was added to the blood perfusate to increase volume delivery to the macula densa segment, afferent arteriolar vasoconstrictor responses to L-SMTC were enhanced, but this effect was again completely prevented after papillectomy. In contrast, the arteriolar diameter responses to the nonselective NOS inhibitor, N-omega-nitro-L-arginine (L-NNA) were only attenuated by papillectomy. L-SMTC (10 mu M) enhanced the efferent arteriolar vasoconstrictor response to ANG II but did not alter the afferent arteriolar vasoconstrictor responsiveness to ANG II. In contrast, L-NNA (100 mu M) enhanced both afferent and efferent arteriolar vasoconstrictor responses to ANG II. These results indicate that the modulating influence of nNOS on afferent arteriolar tone of juxtamedullary nephrons is dependent on distal tubular fluid flow Furthermore, nNOS exerts a differential modulatory action on the juxtamedullary microvasculature by enhancing efferent, but not afferent, arteriolar responsiveness to ANG II.
引用
收藏
页码:F516 / F524
页数:9
相关论文
共 32 条
[1]   Inhibition of 20-HETE production contributes to the vascular responses to nitric oxide [J].
AlonsoGalicia, M ;
Drummond, HA ;
Reddy, KK ;
Falck, JR ;
Roman, RJ .
HYPERTENSION, 1997, 29 (01) :320-325
[2]   INHIBITION OF RAT CEREBELLAR NITRIC-OXIDE SYNTHASE BY 7-NITRO INDAZOLE AND RELATED SUBSTITUTED INDAZOLES [J].
BABBEDGE, RC ;
BLANDWARD, PA ;
HART, SL ;
MOORE, PK .
BRITISH JOURNAL OF PHARMACOLOGY, 1993, 110 (01) :225-228
[3]   TOPOGRAPHY OF NITRIC-OXIDE SYNTHESIS BY LOCALIZING CONSTITUTIVE NO SYNTHASES IN MAMMALIAN KIDNEY [J].
BACHMANN, S ;
BOSSE, HM ;
MUNDEL, P .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL FLUID AND ELECTROLYTE PHYSIOLOGY, 1995, 268 (05) :F885-F898
[4]   SELECTIVE NEURONAL NITRIC-OXIDE SYNTHASE INHIBITION BLOCKS FUROSEMIDE-STIMULATED RENIN SECRETION IN-VIVO [J].
BEIERWALTES, WH .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL FLUID AND ELECTROLYTE PHYSIOLOGY, 1995, 269 (01) :F134-F139
[5]   NITRIC-OXIDE ANTAGONIZES THE ACTIONS OF ANGIOTENSIN-II TO ENHANCE TUBULOGLOMERULAR FEEDBACK RESPONSIVENESS [J].
BRAAM, B ;
KOOMANS, HA .
KIDNEY INTERNATIONAL, 1995, 48 (05) :1406-1411
[6]   DISPARATE EFFECTS OF CA CHANNEL BLOCKADE ON AFFERENT AND EFFERENT ARTERIOLAR RESPONSES TO ANG-II [J].
CARMINES, PK ;
NAVAR, LG .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (06) :F1015-F1020
[7]   INVITRO PERFUSION OF JUXTAMEDULLARY NEPHRONS IN RATS [J].
CASELLAS, D ;
NAVAR, LG .
AMERICAN JOURNAL OF PHYSIOLOGY, 1984, 246 (03) :F349-F358
[8]   LOCALLY PRODUCED EDRF CONTROLS PREGLOMERULAR RESISTANCE AND ULTRAFILTRATION COEFFICIENT [J].
DENG, AH ;
BAYLIS, C .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 264 (02) :F212-F215
[9]  
FURFINE ES, 1994, J BIOL CHEM, V269, P26677
[10]  
ICHIHARA A, 1997, J AM SOC NEPHROL, V8, pA331