Mobile Interspersed Repeats Are Major Structural Variants in the Human Genome

被引:192
作者
Huang, Cheng Ran Lisa [1 ,2 ]
Schneider, Anna M. [3 ]
Lu, Yunqi [1 ,2 ]
Niranjan, Tejasvi [1 ,2 ]
Shen, Peilin [3 ]
Robinson, Matoya A. [2 ]
Steranka, Jared P. [1 ,2 ]
Valle, David [2 ]
Civin, Curt I. [4 ]
Wang, Tao [2 ]
Wheelan, Sarah J. [4 ,5 ]
Ji, Hongkai [5 ]
Boeke, Jef D. [1 ,4 ]
Burns, Kathleen H. [2 ,3 ,4 ]
机构
[1] Johns Hopkins Univ, Sch Med, High Throughput Biol Ctr, Baltimore, MD 21287 USA
[2] Johns Hopkins Univ, Sch Med, Inst Med Genet, Baltimore, MD 21287 USA
[3] Johns Hopkins Univ, Sch Med, Dept Pathol, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD 21287 USA
[5] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
关键词
RETROTRANSPOSON INSERTION; L1; RETROTRANSPOSITION; LINE-1; GENE; SEQUENCE; ELEMENTS; DATABASE; FAMILY; IMPACT;
D O I
10.1016/j.cell.2010.05.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further.
引用
收藏
页码:1171 / U129
页数:19
相关论文
共 54 条
[1]  
[Anonymous], 2004, RepeatMasker Open-3.0 [Internet]
[2]  
Arnold C, 1991, PCR Methods Appl, V1, P39
[3]   Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: The Lyon repeat hypothesis [J].
Bailey, JA ;
Carrel, L ;
Chakravarti, A ;
Eichler, EE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6634-6639
[4]   LINE-1 Retrotransposition Activity in Human Genomes [J].
Beck, Christine R. ;
Collier, Pamela ;
Macfarlane, Catriona ;
Malig, Maika ;
Kidd, Jeffrey M. ;
Eichler, Evan E. ;
Badge, Richard M. ;
Moran, John V. .
CELL, 2010, 141 (07) :1159-U110
[5]   The impact of multiple splice sites in human L1 elements [J].
Belancio, V. P. ;
Roy-Engel, A. M. ;
Deininger, P. .
GENE, 2008, 411 (1-2) :38-45
[6]   Natural genetic variation caused by transposable elements in humans [J].
Bennettt, EA ;
Coleman, LE ;
Tsui, C ;
Pittard, WS ;
Devine, SE .
GENETICS, 2004, 168 (02) :933-951
[7]   L1 (LINE-1) retrotransposon evolution and amplification in recent human history [J].
Boissinot, S ;
Chevret, P ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (06) :915-928
[8]   The Insertional history of an active family of L1 retrotransposons in humans [J].
Boissinot, S ;
Entezam, A ;
Young, L ;
Munson, PJ ;
Furano, AV .
GENOME RESEARCH, 2004, 14 (07) :1221-1231
[9]   Hot L1s account for the bulk of retrotransposition in the human population [J].
Brouha, B ;
Schustak, J ;
Badge, RM ;
Lutz-Prigget, S ;
Farley, AH ;
Moran, JV ;
Kazazian, HH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5280-5285
[10]   Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation:: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements [J].
Chen, Jichao ;
Rattner, Amir ;
Nathans, Jeremy .
HUMAN MOLECULAR GENETICS, 2006, 15 (13) :2146-2156