Computational and analytical challenges in single-cell transcriptomics

被引:811
作者
Stegle, Oliver [1 ]
Teichmann, Sarah A. [1 ,2 ]
Marioni, John C. [1 ,2 ]
机构
[1] European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England
[2] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; STOCHASTIC GENE-EXPRESSION; MESSENGER-RNA-SEQ; REVEALS; RECONSTRUCTION; NETWORKS; NOISE; QUANTIFICATION; HETEROGENEITY; NORMALIZATION;
D O I
10.1038/nrg3833
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The development of high-throughput RNA sequencing (RNA-seq) at the single-cell level has already led to profound new discoveries in biology, ranging from the identification of novel cell types to the study of global patterns of stochastic gene expression. Alongside the technological breakthroughs that have facilitated the large-scale generation of single-cell transcriptomic data, it is important to consider the specific computational and analytical challenges that still have to be overcome. Although some tools for analysing RNA-seq data from bulk cell populations can be readily applied to single-cell RNA-seq data, many new computational strategies are required to fully exploit this data type and to enable a comprehensive yet detailed study of gene expression at the single-cell level.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 86 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]   Detecting differential usage of exons from RNA-seq data [J].
Anders, Simon ;
Reyes, Alejandro ;
Huber, Wolfgang .
GENOME RESEARCH, 2012, 22 (10) :2008-2017
[4]   How to infer gene networks from expression profiles [J].
Bansal, Mukesh ;
Belcastro, Vincenzo ;
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[5]   Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection [J].
Barreiro, Luis B. ;
Tailleux, Ludovic ;
Pai, Athma A. ;
Gicquel, Brigitte ;
Marioni, John C. ;
Gilad, Yoav .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (04) :1204-1209
[6]   Gene Regulation in Primates Evolves under Tissue-Specific Selection Pressures [J].
Blekhman, Ran ;
Oshlack, Alicia ;
Chabot, Adrien E. ;
Smyth, Gordon K. ;
Gilad, Yoav .
PLOS GENETICS, 2008, 4 (11)
[7]   The evolution of gene expression levels in mammalian organs [J].
Brawand, David ;
Soumillon, Magali ;
Necsulea, Anamaria ;
Julien, Philippe ;
Csardi, Gabor ;
Harrigan, Patrick ;
Weier, Manuela ;
Liechti, Angelica ;
Aximu-Petri, Ayinuer ;
Kircher, Martin ;
Albert, Frank W. ;
Zeller, Ulrich ;
Khaitovich, Philipp ;
Gruetzner, Frank ;
Bergmann, Sven ;
Nielsen, Rasmus ;
Paeaebo, Svante ;
Kaessmann, Henrik .
NATURE, 2011, 478 (7369) :343-+
[8]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/NMETH.2645, 10.1038/nmeth.2645]
[9]  
Buettner F., 2015, NATURE BIOTECH
[10]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805