The distribution of extremal points of Gaussian scalar fields

被引:15
作者
Foltin, G [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 16期
关键词
D O I
10.1088/0305-4470/36/16/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the signed density of an extremal point of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a four-dimensional Riemannian manifold.
引用
收藏
页码:4561 / 4580
页数:20
相关论文
共 33 条
[1]   On excursion sets, tube formulas and maxima of random fields [J].
Adler, RJ .
ANNALS OF APPLIED PROBABILITY, 2000, 10 (01) :1-74
[2]  
BARANOVA NB, 1981, JETP LETT+, V33, P195
[3]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[4]   DISRUPTION OF WAVEFRONTS - STATISTICS OF DISLOCATIONS IN INCOHERENT GAUSSIAN RANDOM WAVES [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (01) :27-37
[5]   Phase singularities in isotropic random waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2059-2079
[6]   THE STATISTICAL DISTRIBUTION OF THE MAXIMA OF A RANDOM FUNCTION [J].
CARTWRIGHT, DE ;
LONGUETHIGGINS, MS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 237 (1209) :212-232
[7]  
Chaikin P.M., 2007, PRINCIPLES CONDENSED
[8]  
DAVID F, 1989, GEOMETRY FIELD THEOR, V5, P157
[9]  
Dennis M. R., 2001, THESIS U BRISTOL
[10]  
DENNIS MR, 2001, J PHYS A, V34