Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory

被引:66
作者
Botten, LC [1 ]
White, TP
Asatryan, AA
Langtry, TN
de Sterke, CM
McPhedran, RC
机构
[1] Univ Technol Sydney, Ctr Ultrahigh Bandwidth Devices Opt Syst, Broadway, NSW 2007, Australia
[2] Univ Technol Sydney, Dept Math Sci, Broadway, NSW 2007, Australia
[3] Univ Sydney, Ctr Ultrahigh Bandwidth Devices Opt Syst, Sydney, NSW 2006, Australia
[4] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
10.1103/PhysRevE.70.056606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a rigorous Bloch mode scattering matrix method for modeling two-dimensional photonic crystal structures and discuss the formal properties of the formulation. Reciprocity and energy conservation considerations lead to modal orthogonality relations and normalization. both of which are required for mode calculations in inhomogeneous media. Relations are derived for studying the propagation of Bloch modes through photonic crystal structures, and for the reflection and transmission of these modes at interfaces with other photonic crystal structures.
引用
收藏
页数:13
相关论文
共 42 条
[1]   Y junctions in photonic crystal channel waveguides: high transmission and impedance matching [J].
Boscolo, S ;
Midrio, M ;
Krauss, TF .
OPTICS LETTERS, 2002, 27 (12) :1001-1003
[2]   Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides [J].
Boscolo, S ;
Midrio, M ;
Someda, CG .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (01) :47-53
[3]   Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method [J].
Botten, LC ;
Nicorovici, NAP ;
Asatryan, AA ;
McPhedran, RC ;
de Sterke, CM ;
Robinson, PA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12) :2165-2176
[4]   Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part II. Properties and implementation [J].
Botten, LC ;
Nicorovici, NAP ;
Asatryan, AA ;
McPhedran, RC ;
de Sterke, CM ;
Robinson, PA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12) :2177-2190
[5]   Photonic crystal devices modelled as grating stacks: matrix generalizations of thin film optics [J].
Botten, LC ;
White, TP ;
de Sterke, CM ;
McPhedran, RC ;
Asatryan, AA ;
Langtry, TN .
OPTICS EXPRESS, 2004, 12 (08) :1592-1604
[6]   Semianalytic treatment for propagation in finite photonic crystal waveguides [J].
Botten, LC ;
Asatryan, AA ;
Langtry, TN ;
White, TP ;
de Sterke, CM ;
McPhedran, RC .
OPTICS LETTERS, 2003, 28 (10) :854-856
[7]   Photonic band structure calculations using scattering matrices [J].
Botten, LC ;
Nicorovici, NA ;
McPhedran, RC ;
de Sterke, CM ;
Asatryan, AA .
PHYSICAL REVIEW E, 2001, 64 (04) :18
[8]   The Wannier function approach to photonic crystal circuits [J].
Busch, K ;
Mingaleev, SF ;
Garcia-Martin, A ;
Schillinger, M ;
Hermann, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (30) :R1233-R1256
[9]   ORDER-N SPECTRAL METHOD FOR ELECTROMAGNETIC-WAVES [J].
CHAN, CT ;
YU, QL ;
HO, KM .
PHYSICAL REVIEW B, 1995, 51 (23) :16635-16642
[10]   Channel drop tunneling through localized states [J].
Fan, SH ;
Villeneuve, PR ;
Joannopoulos, JD .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :960-963