Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may 'lock-in' lutein-based photoprotection during acclimation to strong light

被引:61
作者
Matsubara, S
Naumann, M
Martin, R
Nichol, C
Rascher, U
Morosinotto, T
Bassi, R
Osmond, B
机构
[1] Australian Natl Univ, Res Sch Biol Sci, Photobioenerget Grp, Canberra, ACT 2601, Australia
[2] Columbia Univ, Biosphere Ctr 2, Oracle, AZ 85623 USA
[3] Univ Verona, Dipartimento Sci & Tecnol, I-37234 Verona, Italy
关键词
Inga sp; lutein-epoxide; photoacclimation; photoprotection; photosynthesis; xanthophyll cycles;
D O I
10.1093/jxb/eri012
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The kinetics of response to strong light have been examined in deeply shaded leaves of the tropical tree legume (Inga sp.) which have extraordinarily high levels of the alpha-xanthophyll lutein-epoxide that are co-located in pigment-protein complexes of the photosynthetic apparatus with the beta-xanthophyll violaxanthin. As in other species, rapidly reversible photoprotection (measured as non-photochemical chlorophyll fluorescence quenching) is initiated within the time frame of sun-flecks (minutes), before detectable conversion of violaxanthin to antheraxanthin or zeaxanthin. Photoprotection is stabilized within hours of exposure to strong light by simultaneously engaging the reversible violaxanthin cycle and a slowly reversible conversion of lutein-epoxide to lutein. It is proposed that this lutein 'locks in' a primary mechanism of photoprotection during photoacclimation in this species, converting efficient light-harvesting antennae of the shade plant into potential excitation dissipating centres. It is hypothesized that lutein occupies sites L2 and V1 in light-harvesting chlorophyll protein complexes of photosystem II, facilitating enhanced photoprotection through the superior singlet and/or triplet chlorophyll quenching capacity of lutein.
引用
收藏
页码:461 / 468
页数:8
相关论文
共 49 条
[1]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[2]   Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yucca species growing in the Mojave Desert [J].
Barker, DH ;
Adams, WW ;
Demmig-Adams, B ;
Logan, BA ;
Verhoeven, AS ;
Smith, SD .
PLANT CELL AND ENVIRONMENT, 2002, 25 (01) :95-103
[3]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[4]   Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls [J].
Bassi, R ;
Caffarri, S .
PHOTOSYNTHESIS RESEARCH, 2000, 64 (2-3) :243-256
[5]   ROLE OF THE XANTHOPHYLL CYCLE IN PHOTOPROTECTION ELUCIDATED BY MEASUREMENTS OF LIGHT-INDUCED ABSORBENCY CHANGES, FLUORESCENCE AND PHOTOSYNTHESIS IN LEAVES OF HEDERA-CANARIENSIS [J].
BILGER, W ;
BJORKMAN, O .
PHOTOSYNTHESIS RESEARCH, 1990, 25 (03) :173-185
[6]  
BOUVIER F, 1996, P NATL ACAD SCI USA, V91, P28861
[7]   Unusual carotenoid composition and a new type of xanthophyll cycle in plants [J].
Bungard, RA ;
Ruban, AV ;
Hibberd, JM ;
Press, MC ;
Horton, P ;
Scholes, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :1135-1139
[8]   The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting [J].
Caffarri, S ;
Croce, R ;
Breton, J ;
Bassi, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (38) :35924-35933
[9]   The role of inactive photosystem-II-mediated quenching in a last-ditch community defence against high light stress in vivo [J].
Chow, WS ;
Lee, HY ;
Park, YI ;
Park, YM ;
Hong, YN ;
Anderson, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2002, 357 (1426) :1441-1449
[10]  
Czeczuga B., 1996, Feddes Repertorium, V107, P89