Phase resetting light pulses induce Per1 and persistent spike activity in a subpopulation of biological clock neurons

被引:113
作者
Kuhlman, SJ
Silver, R
Le Sauter, J
Bult-Ito, A
McMahon, DG
机构
[1] Univ Kentucky, Dept Physiol, Lexington, KY 40536 USA
[2] Columbia Univ Barnard Coll, Dept Psychol, New York, NY 10027 USA
[3] Columbia Univ, Dept Psychol, New York, NY 10027 USA
[4] Columbia Univ, Dept Anat & Cell Biol, New York, NY 10027 USA
[5] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA
关键词
suprachiasmatic nucleus; circadian rhythms; GFP; transgenic mice; electrophysiology; gene expression; transcription factors; potassium channels; vasoactive intestinal peptide; arginine vasopressin; entrainment;
D O I
10.1523/JNEUROSCI.23-04-01441.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The endogenous circadian clock of the mammalian suprachiasmatic nucleus (SCN) can be reset by light to synchronize the biological clock of the brain with the external environment. This process involves induction of immediate-early genes such as the circadian clock gene Period1 (Per1) and results in a stable shift in the timing of behavioral and physiological rhythms on subsequent days. The mechanisms by which gene activation permanently alters the phase of clock neuron activity are unknown. To study the relationship between acute gene activation and persistent changes in the neurophysiology of SCN neurons, we recorded from SCN neurons marked with a dynamic green fluorescent protein (GFP) reporter of Per1 gene activity. Phase-resetting light pulses resulted in Per1 induction in a distinct subset of SCN neurons that also exhibited a persistent increase in action potential frequency 3-5 hr after a light pulse. By simultaneously quantifying Per1 gene activation and spike frequency in individual neurons, we found that the degree of Per1 induction was highly correlated with neuronal spike frequency on a cell-by-cell basis. Increased neuronal activity was mediated by membrane potential depolarization as a result of a reduction in outward potassium current. Double-label immunocytochemistry revealed that vasoactive intestinal peptide (VIP)-expressing cells, but not arginine vasopressin (AVP)-expressing cells, exhibited significant Per1 induction by light pulses. Rhythmic GFP expression occurred in both VIP and AVP neurons. Our results indicate that the steps that link acute molecular events to permanent changes in clock phase involve persistent suppression of potassium current, downstream of Per1 gene induction, in a specific subset of Per1-expressing neurons enriched for VIP.
引用
收藏
页码:1441 / 1450
页数:10
相关论文
共 64 条
[1]   ESTIMATION OF NUCLEAR POPULATION FROM MICROTOME SECTIONS [J].
ABERCROMBIE, M .
ANATOMICAL RECORD, 1946, 94 (02) :239-247
[2]   Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections [J].
Abrahamson, EE ;
Moore, RY .
BRAIN RESEARCH, 2001, 916 (1-2) :172-191
[3]   Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice [J].
Aida, R ;
Moriya, T ;
Araki, M ;
Akiyama, M ;
Wada, K ;
Wada, E ;
Shibata, S .
MOLECULAR PHARMACOLOGY, 2002, 61 (01) :26-34
[4]  
Akiyama M, 1999, J NEUROSCI, V19, P1115
[5]   mPer1 and mPer2 are essential for normal resetting of the circadian clock [J].
Albrecht, U ;
Zheng, BH ;
Larkin, D ;
Sun, ZS ;
Lee, CC .
JOURNAL OF BIOLOGICAL RHYTHMS, 2001, 16 (02) :100-104
[6]   A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light [J].
Albrecht, U ;
Sun, ZS ;
Eichele, G ;
Lee, CC .
CELL, 1997, 91 (07) :1055-1064
[7]   LIGHT REGULATES EXPRESSION OF A FOS-RELATED PROTEIN IN RAT SUPRACHIASMATIC NUCLEI [J].
ARONIN, N ;
SAGAR, SM ;
SHARP, FR ;
SCHWARTZ, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (15) :5959-5962
[8]   Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock [J].
Bae, K ;
Jin, XW ;
Maywood, ES ;
Hastings, MH ;
Reppert, SM ;
Weaver, DR .
NEURON, 2001, 30 (02) :525-536
[9]   The p42/44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment [J].
Butcher, GQ ;
Dziema, H ;
Collamore, M ;
Burgoon, PW ;
Obrietan, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (33) :29519-29525
[10]   Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene [J].
Cermakian, N ;
Monaco, L ;
Pando, MP ;
Dierich, A ;
Sassone-Corsi, P .
EMBO JOURNAL, 2001, 20 (15) :3967-3974