Feedback assisted transmission subspace tracking for MIMO systems

被引:51
作者
Banister, BC [1 ]
Zeidler, JR
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Qualcomm Inc, San Diego, CA 92121 USA
[3] Space & Naval Warfare Syst Ctr, San Diego, CA 92152 USA
关键词
adaptive arrays; gradient methods; multiple-input-multiple-output (MINO) systems; transmitting antennas;
D O I
10.1109/JSAC.2003.809721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a feedback assisted stochastic gradient algorithm for transmission tracking of the dominant channel subspaces for multiple-input-multiple-output (MIMO) communications systems. Subspace tracking is introduced as a means of tracking multiple transmission weights, being the MIMO generalization of beam steering in the familiar multiple-input-single-output case. The subspace solution approximates that of water filling (WF) in some cases, without the complete rate/power allocation required by WE The gain of subspace tracking in low rank systems is demonstrated, particularly, in the case where the number of transmit antennas exceeds the number of receive antennas. Simulations of ergodic capacity show the utility of both subspace tracking in general and of the specific adaptation algorithm, and simulations of frame-error rates show the utility in a specific coding example.
引用
收藏
页码:452 / 463
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1998, IEEE J SELECT AREAS
[2]  
BANISTER BC, 2003, IN PRESS IEEE T SIGN
[3]  
BAUCH G, 2001, ANN TELECOMMUNIC JUL, V56
[4]  
BAUCH G, 1997, P 2 EUR PERS MOB COM, P307
[5]  
BJERKE BA, 2000, P AD SYST SIGN PROC, P70
[6]   On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas [J].
Foschini G.J. ;
Gans M.J. .
Wireless Personal Communications, 1998, 6 (3) :311-335
[7]  
Foschini G. J., 1996, Bell Labs Technical Journal, V1, P41, DOI 10.1002/bltj.2015
[8]  
GERLACH D, 1994, IEEE SIGNAL PROCESSI, V1
[9]  
Gesbert D, 2000, GLOB TELECOMM CONF, P1083, DOI 10.1109/GLOCOM.2000.891304
[10]  
Golub G.H., 2013, MATRIX COMPUTATIONS