A practical approach for profit-based unit commitment with emission limitations

被引:48
作者
Catalao, J. P. S. [1 ]
Mariano, S. J. P. S. [1 ]
Mendes, V. M. F. [2 ]
Ferreira, L. A. F. M. [3 ]
机构
[1] Univ Beira Interior, Dept Electromech Engn, P-6201001 Covilha, Portugal
[2] Inst Super Engn Lisboa, Dept Elect Engn & Automat, P-1950062 Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Super Tecn, Dept Elect Engn & Comp, P-1049001 Lisbon, Portugal
关键词
Profit-based unit commitment (PBUC); Electricity market; Emission limitations; Multiobjective optimisation (MO);
D O I
10.1016/j.ijepes.2009.07.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a practical approach for profit-based unit commitment (PBUC) with emission limitations. Under deregulation, unit commitment has evolved from a minimum-cost optimisation problem to a profit-based optimisation problem. However, as a consequence of growing environmental concern, the impact of fossil-fuelled power plants must be considered, giving rise to emission limitations. The simultaneous address of the profit with the emission is taken into account in our practical approach by a multiobjective optimisation (MO) problem. Hence, trade-off Curves between profit and emission are obtained for different energy price profiles, in a way to aid decision-makers concerning emission allowance trading. Moreover, a new parameter is presented, ratio of change, and the corresponding gradient angle, enabling the proper selection of a compromise commitment for the units. A case study based on the standard IEEE 30-bus system is presented to illustrate the proficiency Of Our practical approach for the new competitive and environmentally constrained electricity supply industry. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:218 / 224
页数:7
相关论文
共 25 条
[1]   Multiobjective particle swarm optimization for environmental/economic dispatch problem [J].
Abido, M. A. .
ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (07) :1105-1113
[2]  
AGGARWAL SK, 2009, ELECT POWER ENERGY S, V31, P13, DOI DOI 10.1016/J.IJEPES.2008.09.003
[3]   Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method [J].
Amjady, Nima ;
Keynia, Farshid .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (09) :533-546
[4]  
[Anonymous], 2013, Power generation, operation, and control
[5]  
[Anonymous], 1999, PRICE BASED COMMITME
[6]   Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II [J].
Basu, M. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (02) :140-149
[7]  
Camyab A., 2006, IEEE Power & Energy Magazine, V4, P47, DOI 10.1109/MPAE.2006.1657719
[8]  
CATALAO J, 2008, P 16 POW SYST COMP C
[9]   Short-term scheduling of thermal units: emission constraints and trade-off curves [J].
Catalao, J. P. S. ;
Mariano, S. J. P. S. ;
Mendes, V. M. F. ;
Ferreira, L. A. F. M. .
EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2008, 18 (01) :1-14
[10]   Short-term electricity prices forecasting in a competitive market: A neural network approach [J].
Catalao, J. P. S. ;
Mariano, S. J. P. S. ;
Mendes, V. M. F. ;
Ferreira, L. A. F. M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (10) :1297-1304