Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis

被引:515
作者
Miao, Y [1 ]
Laun, T [1 ]
Zimmermann, P [1 ]
Zentgraf, U [1 ]
机构
[1] Univ Tubingen, Dept Gen Genet, ZMBP, Ctr Mol Biol & Plants, D-72076 Tubingen, Germany
关键词
catalases; hydrogen peroxide; leaf senescence; target genes; WRKY transcription factors;
D O I
10.1007/s11103-005-2142-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Arabidopsis WRKY proteins comprise a family of plant specific zinc-finger-type transcription factors involved in the regulation of gene expression during pathogen defense, wounding, trichome development, and senescence. To understand the regulatory role of the senescence-related WRKY53 factor, we identified target genes of this transcription factor by a pull down assay using genomic DNA and recombinant WRKY53 protein. We isolated a number of candidate target genes including other transcription factors, also of the WRKY family, stress- and defence related genes, and senescence-associated genes (SAGs). WRKY53 protein could bind to these different promoters in vitro and in vivo and it could act either as transcriptional activator or transcriptional repressor depending on the sequences surrounding the W-boxes. Overexpression, RNAi and knock-out lines showed accelerated and delayed senescence phenotypes, respectively.. and exhibited altered expression levels of the target genes. WRKY53 can be induced by H2O2 and can regulate its own expression in a negative feed back loop. Our results suggest that WRKY53 acts in a complex transcription factor signalling network regulating senescence specific gene expression and that hydrogen peroxide might be involved in signal transduction.
引用
收藏
页码:853 / 867
页数:15
相关论文
共 48 条
[1]   Gene expression and the thiol redox state [J].
Arrigo, AP .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 27 (9-10) :936-944
[2]  
Bechtold N, 1998, METH MOL B, V82, P259
[3]  
Biswal B, 1999, CURR SCI INDIA, V77, P775
[4]   Last exit: Senescence, abscission, and meristem arrest in Arabidopsis [J].
Bleecker, AB ;
Patterson, SE .
PLANT CELL, 1997, 9 (07) :1169-1179
[5]   The molecular analysis of leaf senescence - a genomics approach [J].
Buchanan-Wollaston, V ;
Earl, S ;
Harrison, E ;
Mathas, E ;
Navabpour, S ;
Page, T ;
Pink, D .
PLANT BIOTECHNOLOGY JOURNAL, 2003, 1 (01) :3-22
[6]   The molecular biology of leaf senescence [J].
BuchananWollaston, V .
JOURNAL OF EXPERIMENTAL BOTANY, 1997, 48 (307) :181-199
[7]   Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae [J].
Butt, A ;
Mousley, C ;
Morris, K ;
Beynon, J ;
Can, C ;
Holub, E ;
Greenberg, JT ;
Buchanan-Wollaston, V .
PLANT JOURNAL, 1998, 16 (02) :209-221
[8]   Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses [J].
Chen, WQ ;
Provart, NJ ;
Glazebrook, J ;
Katagiri, F ;
Chang, HS ;
Eulgem, T ;
Mauch, F ;
Luan, S ;
Zou, GZ ;
Whitham, SA ;
Budworth, PR ;
Tao, Y ;
Xie, ZY ;
Chen, X ;
Lam, S ;
Kreps, JA ;
Harper, JF ;
Si-Ammour, A ;
Mauch-Mani, B ;
Heinlein, M ;
Kobayashi, K ;
Hohn, T ;
Dangl, JL ;
Wang, X ;
Zhu, T .
PLANT CELL, 2002, 14 (03) :559-574
[9]   Regulation of the Arabidopsis transcriptome by oxidative stress [J].
Desikan, R ;
Mackerness, SAH ;
Hancock, JT ;
Neill, SJ .
PLANT PHYSIOLOGY, 2001, 127 (01) :159-172
[10]   Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response [J].
Dong, JX ;
Chen, CH ;
Chen, ZX .
PLANT MOLECULAR BIOLOGY, 2003, 51 (01) :21-37