Regulation of cell size by glucose is exerted via repression of the CLN1 promoter

被引:43
作者
Flick, K
Chapman-Shimshoni, D
Stuart, D
Guaderrama, M
Wittenberg, C
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1128/MCB.18.5.2492
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Yeast cells are keenly sensitive to the availability and quality of nutrients. Addition of glucose to cells growing on a poorer carbon source elicits a cell cycle delay during G(1) phase and a concomitant increase in the cell size. The signal is transduced through the RAS-cyclic AMP pathway. Using synchronized populations of G(1) cells, we show that the increase in cell size required for budding depends upon CLN1 but not other G(1) cyclins. This delay in cell cycle initiation is associated specifically with transcriptional repression of CLN1. CLN2 is not repressed. Repression of CLN1 is not limited to the first cycle following glucose addition but occurs in each cell cycle during growth on glucose. A 106-bp fragment of the CLN1 promoter containing the three MluI cell cycle box (MCB) core elements responsible for the majority of CLN1-associated upstream activation sequence activity is sufficient to confer glucose-induced repression on a heterologous reporter. A mutant CLN2 promoter that is rendered dependent upon its three MCB core elements due to inactivation of its Swi4-dependent cell cycle box (SCB) elements is also repressed by glucose. The response to glucose is partially suppressed by inactivation of SWI4, but not MBP1, which is consistent with the dependence of MCB core elements upon the SCB-bindigg transcription factor (SBF). We suggest that differential regulation of CLN1 and CLN2 by glucose results from differences in the capacity of SBF to activate transcription driven by SCB and MCB core elements. Finally, we show that transcriptional repression is sufficient to explain the cell cycle delay that occurs in response to glucose.
引用
收藏
页码:2492 / 2501
页数:10
相关论文
共 41 条