tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size

被引:176
作者
Polle, JEW [1 ]
Kanakagiri, SD [1 ]
Melis, A [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
关键词
Chlamydomonas; DNA insertional mutagenesis; chlorophyll-deficient mutant; light-harvesting antenna; photosynthesis; solar conversion efficiency;
D O I
10.1007/s00425-002-0968-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
DNA insertional mutagenesis and screening of the green alga Chlamydomonas reinhardtii was employed to isolate tla1, a stable transformant having a truncated light-harvesting chlorophyll antenna size. Molecular analysis showed a single plasmid insertion into an open reading frame of the nuclear genome corresponding to a novel gene (Tla1) that encodes a protein of 213 amino acids. Genetic analysis showed co-segregation of plasmid and tla1 phenotype. Biochemical analyses showed the tla1 mutant to be chlorophyll deficient, with a functional chlorophyll antenna size of photosystem 1 and photosystem II being about 50% and 65% of that of the wild type, respectively. It contained a correspondingly lower amount of light-harvesting proteins than the wild type and had lower steady-state levels of Lhcb mRNA. The tla1 strain required a higher light intensity for the saturation of photosynthesis and showed greater solar conversion efficiencies and a higher photosynthetic productivity than the wild type under mass culture conditions. Results are discussed in terms of the tla1 mutation, its phenotype, and the role played by the Tla1 gene in the regulation of the photosynthetic chlorophyll antenna size in C. reinhardtii.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 47 条
[1]   PHOTOREGULATION OF THE COMPOSITION, FUNCTION, AND STRUCTURE OF THYLAKOID MEMBRANES [J].
ANDERSON, JM .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1986, 37 :93-136
[2]  
[Anonymous], ENCY CHEM TECHNOLOGY
[3]  
[Anonymous], BIOHYDROGEN
[4]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[5]  
BASSI R, 1992, J BIOL CHEM, V267, P25714
[6]   PHOTON YIELD OF O-2 EVOLUTION AND CHLOROPHYLL FLUORESCENCE CHARACTERISTICS AT 77-K AMONG VASCULAR PLANTS OF DIVERSE ORIGINS [J].
BJORKMAN, O ;
DEMMIG, B .
PLANTA, 1987, 170 (04) :489-504
[7]   FLUORESCENCE QUENCHING IN PHOTOSYSTEM-II OF CHLOROPLASTS [J].
BUTLER, WL ;
KITAJIMA, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 376 (01) :116-125
[8]   MUTANTS OF CHLAMYDOMONAS WITH ABERRANT RESPONSES TO SULFUR DEPRIVATION [J].
DAVIES, JP ;
YILDIZ, F ;
GROSSMAN, AR .
PLANT CELL, 1994, 6 (01) :53-63
[9]   Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation [J].
Davies, JP ;
Yildiz, FH ;
Grossman, A .
EMBO JOURNAL, 1996, 15 (09) :2150-2159
[10]   THE ARGININOSUCCINATE LYASE GENE OF CHLAMYDOMONAS-REINHARDTII - AN IMPORTANT TOOL FOR NUCLEAR TRANSFORMATION AND FOR CORRELATING THE GENETIC AND MOLECULAR MAPS OF THE ARG7 LOCUS [J].
DEBUCHY, R ;
PURTON, S ;
ROCHAIX, JD .
EMBO JOURNAL, 1989, 8 (10) :2803-2809