Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2(EPF) and RAD6 are recognized by 26 S proteasome subunit 5

被引:173
作者
Baboshina, OV [1 ]
Haas, AL [1 ]
机构
[1] MED COLL WISCONSIN,DEPT BIOCHEM,MILWAUKEE,WI 53226
关键词
D O I
10.1074/jbc.271.5.2823
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Targeting of substrates for degradation by the ATP, ubiquitin-dependent pathway requires formation of multiubiquitin chains in which the 8.6-kDa polypeptide is linked by isopeptide bonds between carboxyl termini and Lys-48 residues of successive monomers. Binding of Lys-48-linked chains by subunit 5 of the 26 S proteasome regulatory complex commits the attached target protein to degradation with concomitant release of free ubiquitin monomers following disassembly of the chains. Point mutants of ubiquitin (Lys --> Arg) were used to map the linkage specificity for ubiquitin-conjugating enzymes previously demonstrated to form novel multiubiquitin chains not attached through Lys-48. Recombinant human E2(EPF) catalyzed multiubiquitin chain formation exclusively through Lys-11 of ubiquitin while recombinant yeast RAD6 formed chains linked only through Lys-6, Multiubiquitin chains linked through Lys-6, Lys-11, or Lys-48 each bound to subunit 5 off partially purified human 26 S proteasome with comparable affinities. Since chains bearing different linkages are expected to pack into distinct structures, competition between Lys-11 and Lys-48 chains for binding to subunit 5 demonstrates that the latter possesses determinants for recognizing alternatively linked chains and precludes the existence of subunit 5 isoforms recognizing distinct structures, In addition, competition studies provided an estimate of K-d less than or equal to 18 nM for the intrinsic binding of Lys-48-linked chains of linkage number n > 4. This result suggests that the principal mechanistic advantage of multiubiquitin chain formation is to enhance the affinity of the associated substrate for the 26 S complex relative to that of unconjugated target protein. Complementation studies with E1/E2-depleted rabbit reticulocyte extract demonstrated RAD6 supported isopeptide ligase-dependent degradation only through Lys-48-linked chains, while E2(EPF) retained the ability to target a model radiolabeled substrate through Lys-11-linked chains. Therefore, the linkage specificity exhibited by these E2 isozymes depends on their catalytic context with respect to isopeptide ligase.
引用
收藏
页码:2823 / 2831
页数:9
相关论文
共 64 条
[1]   LOSS OF P53 PROTEIN IN HUMAN PAPILLOMAVIRUS TYPE-16 E6-IMMORTALIZED HUMAN MAMMARY EPITHELIAL-CELLS [J].
BAND, V ;
DECAPRIO, JA ;
DELMOLINO, L ;
KULESA, V ;
SAGER, R .
JOURNAL OF VIROLOGY, 1991, 65 (12) :6671-6676
[2]  
BANERJEE A, 1993, J BIOL CHEM, V268, P5668
[3]  
BLUMENFELD N, 1994, J BIOL CHEM, V269, P9574
[4]   SITE-DIRECTED MUTAGENESIS OF UBIQUITIN - DIFFERENTIAL ROLES FOR ARGININE IN THE INTERACTION WITH UBIQUITIN-ACTIVATING ENZYME [J].
BURCH, TJ ;
HAAS, AL .
BIOCHEMISTRY, 1994, 33 (23) :7300-7308
[5]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[6]  
CHEN ZJ, 1990, J BIOL CHEM, V265, P21835
[7]   UBIQUITIN DEPENDENCE OF SELECTIVE PROTEIN-DEGRADATION DEMONSTRATED IN THE MAMMALIAN-CELL CYCLE MUTANT TS85 [J].
CIECHANOVER, A ;
FINLEY, D ;
VARSHAVSKY, A .
CELL, 1984, 37 (01) :57-66
[8]   DEGRADATION OF NUCLEAR ONCOPROTEINS BY THE UBIQUITIN SYSTEM INVITRO [J].
CIECHANOVER, A ;
DIGIUSEPPE, JA ;
BERCOVICH, B ;
ORIAN, A ;
RICHTER, JD ;
SCHWARTZ, AL ;
BRODEUR, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (01) :139-143
[9]  
CIECHANOVER A, 1994, J BIOL CHEM, V269, P9582
[10]  
CIECHANOVER A, 1991, PROG CLIN BIOL RES, V366, P37