Exclusion zone of convex brushes in the strong-stretching limit

被引:16
作者
Belyi, VA
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1778153
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate asymptotic properties of long polymers grafted to convex cylindrical and spherical surfaces, and, in particular, distribution of chain free ends. The parabolic potential profile, predicted for flat and concave brushes, fails in convex brushes, and chain free ends span only a finite fraction of the brush thickness. In this paper, we extend the self-consistent model developed by Ball, Marko, Milner, and Witten [Macromolecules 24, 693 (1991)] to determine the size of the exclusion zone, i.e., size of the region of the brush free from chain ends. We show that in the limit of strong stretching, the brush can be described by an alternative system of integral equations. This system can be solved exactly in the limit of weakly curved brushes, and numerically for the intermediate to strong curvatures. We find that going from melt state to theta solvent and then to marginal solvent decreases relative size of the exclusion zone. These relative differences grow exponentially as the curvature decreases to zero. (C) 2004 American Institute of Physics.
引用
收藏
页码:6547 / 6554
页数:8
相关论文
共 25 条
[1]   ADSORPTION OF CHAIN MOLECULES WITH A POLAR HEAD A-SCALING DESCRIPTION [J].
ALEXANDER, S .
JOURNAL DE PHYSIQUE, 1977, 38 (08) :983-987
[2]   POLYMERS GRAFTED TO A CONVEX SURFACE [J].
BALL, RC ;
MARKO, JF ;
MILNER, ST ;
WITTEN, TA .
MACROMOLECULES, 1991, 24 (03) :693-703
[3]   SCALING THEORY OF SUPERMOLECULAR STRUCTURES IN BLOCK COPOLYMER SOLVENT SYSTEMS .1. MODEL OF MICELLAR STRUCTURES [J].
BIRSHTEIN, TM ;
ZHULINA, EB .
POLYMER, 1989, 30 (01) :170-177
[4]   CONFORMATIONS OF STAR-BRANCHED MACROMOLECULES [J].
BIRSHTEIN, TM ;
ZHULINA, EB .
POLYMER, 1984, 25 (10) :1453-1461
[5]   STRUCTURAL AND THERMODYNAMIC PROPERTIES OF END-GRAFTED POLYMERS ON CURVED SURFACES [J].
CARIGNANO, MA ;
SZLEIFER, I .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (21) :8662-8669
[6]   POLYMERS TETHERED TO CURVED INTERFACES - A SELF-CONSISTENT-FIELD ANALYSIS [J].
DAN, N ;
TIRRELL, M .
MACROMOLECULES, 1992, 25 (11) :2890-2895
[7]   STAR SHAPED POLYMERS - A MODEL FOR THE CONFORMATION AND ITS CONCENTRATION-DEPENDENCE [J].
DAOUD, M ;
COTTON, JP .
JOURNAL DE PHYSIQUE, 1982, 43 (03) :531-538
[8]  
De Gennes PG., 1979, SCALING CONCEPTS POL
[9]  
DEGENNES PG, 1985, CR ACAD SCI II, V300, P839
[10]   CONFORMATIONS OF POLYMERS ATTACHED TO AN INTERFACE [J].
DEGENNES, PG .
MACROMOLECULES, 1980, 13 (05) :1069-1075