Optimal combination of signals from colocated gravitational wave interferometers for use in searches for a stochastic background

被引:10
作者
Lazzarini, A [1 ]
Bose, S
Fritschel, P
McHugh, M
Regimbau, T
Reilly, K
Romano, JD
Whelan, JT
Whitcomb, S
Whiting, BF
机构
[1] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[2] Washington State Univ, Dept Phys, Pullman, WA 99164 USA
[3] MIT, LIGO Lab, Cambridge, MA 02139 USA
[4] Loyola Univ New Orleans, Dept Phys, New Orleans, LA 70803 USA
[5] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales
[6] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[7] IUCAA, Pune, Maharashtra, India
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.70.062001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This article derives an optimal (i.e., unbiased, minimum variance) estimator for the pseudodetector strain for a pair of colocated gravitational wave interferometers (such as the pair of LIGO interferometers at its Hanford Observatory), allowing for possible instrumental correlations between the two detectors. The technique is robust and does not involve any assumptions or approximations regarding the relative strength of gravitational wave signals in the Hanford pair with respect to other sources of correlated instrumental or environmental noise. An expression is given for the effective power spectral density of the combined noise in the pseudodetector. This can then be introduced into the standard optimal Wiener filter used to cross-correlate detector data streams in order to obtain an optimal estimate of the stochastic gravitational wave background. In addition, a dual to the optimal estimate of strain is derived. This dual is constructed to contain no gravitational wave signature and can thus be used as an "off-source" measurement to test algorithms used in the "on-source" observation.
引用
收藏
页码:062001 / 1
页数:12
相关论文
共 13 条
[1]  
Abbott B, 2004, PHYS REV D, V69, DOI [10.1103/PhysRevD.69.122004, 10.1103/PhysRevD.69.082004]
[2]   Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities [J].
Allen, B ;
Romano, JD .
PHYSICAL REVIEW D, 1999, 59 (10)
[3]  
Allen B., 1996, HOUCHES SCH PHYS AST, P373
[4]   LIGO and the detection of gravitational waves [J].
Barish, BC ;
Weiss, R .
PHYSICS TODAY, 1999, 52 (10) :44-50
[5]   The VIRGO interferometer for gravitational wave detection [J].
Caron, B ;
Dominjon, A ;
Drezen, C ;
Flaminio, R ;
Grave, X ;
Marion, F ;
Massonnet, L ;
Mehmel, C ;
Morand, R ;
Mours, B ;
Sannibale, V ;
Yvert, M ;
Babusci, D ;
Bellucci, S ;
Candusso, S ;
Giordano, G ;
Matone, G ;
Mackowski, JM ;
Pinard, L ;
Barone, F ;
Calloni, E ;
DiFiore, L ;
Flagiello, M ;
Garuti, F ;
Grado, A ;
Longo, M ;
Lops, M ;
Marano, S ;
Milano, L ;
Solimeno, S ;
Brisson, V ;
Cavalier, F ;
Davier, M ;
Hello, P ;
Heusse, P ;
Mann, P ;
Acker, Y ;
Barsuglia, M ;
Bhawal, B ;
Bondu, F ;
Brillet, A ;
Heitmann, H ;
Innocent, JM ;
Latrach, L ;
Man, CN ;
PhamTu, M ;
Tournier, E ;
Taubmann, M ;
Vinet, JY ;
Boccara, C .
NUCLEAR PHYSICS B, 1997, :167-175
[6]   Modulating the experimental signature of a stochastic gravitational wave background [J].
Finn, LS ;
Lazzarini, A .
PHYSICAL REVIEW D, 2001, 64 (08)
[7]   SENSITIVITY OF THE LASER INTERFEROMETER GRAVITATIONAL-WAVE OBSERVATORY TO A STOCHASTIC BACKGROUND, AND ITS DEPENDENCE ON THE DETECTOR ORIENTATIONS [J].
FLANAGAN, EE .
PHYSICAL REVIEW D, 1993, 48 (06) :2389-2407
[8]  
SCHOFIELD R, COMMUNICATION
[9]   Time delay interferometry with moving spacecraft arrays [J].
Tinto, M ;
Estabrook, FB ;
Armstrong, JW .
PHYSICAL REVIEW D, 2004, 69 (08) :10
[10]   Implementation of time-delay interferometry for LISA [J].
Tinto, M ;
Shaddock, DA ;
Sylvestre, J ;
Armstrong, JW .
PHYSICAL REVIEW D, 2003, 67 (12)