Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ

被引:172
作者
Cui, CB
Cooper, LF
Yang, XL
Karsenty, G
Aukhil, I
机构
[1] Univ N Carolina, Dept Periodontol, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Prosthodont, Chapel Hill, NC 27599 USA
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
关键词
D O I
10.1128/MCB.23.3.1004-1013.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Core-binding factor 1 (Cbfa1; also called Runx2) is a transcription factor belonging to the Runt family of transcription factors that binds to an osteoblast-specific cis-acting element (OSE2) activating the expression of osteocalcin, an osteoblast-specific gene. Using the yeast two-hybrid system, we identified a transcriptional coactivator, TAZ (transcriptional coactivator with PDZ-binding motif), that binds to Cbfa1. A functional relationship between Cbfa1 and TAZ is demonstrated by the coimmunoprecipitation of TAZ by Cbfa1 and by the fact that TAZ induces a dose-dependent increase in the activity of osteocalcin promoter-luciferase constructs by Cbfa1 A dominant-negative construct of TAZ in which the coactivation domains have been deleted reduces osteocalcin gene expression down to basal levels. NIH 3T3, MC 3T3, and ROS 17/2.8 cells showed the expected nuclear localization of Cbfa1, whereas TAZ was distributed throughout the cytoplasm with some nuclear localization when transfected with either Cbfa1 or TAZ. Upon cotransfection by both Cbfa1 and TAZ, the transfected TAZ shows predominant nuclear localization. The dominant-negative construct of TAZ shows minimal nuclear localization upon cotransfection with Cbfa1. These data indicate that TAZ is a transcription coactivator for Cbfa1 and may be involved in the regulation of osteoblast differentiation.
引用
收藏
页码:1004 / 1013
页数:10
相关论文
共 27 条
[1]   14-3-3 and its possible role in co-ordinating multiple signalling pathways [J].
Aitken, A .
TRENDS IN CELL BIOLOGY, 1996, 6 (09) :341-347
[2]   TRANSFORMING P21(RAS) MUTANTS AND C-ETS-2 ACTIVATE THE CYCLIN D1 PROMOTER THROUGH DISTINGUISHABLE REGIONS [J].
ALBANESE, C ;
JOHNSON, J ;
WATANABE, G ;
EKLUND, N ;
VU, D ;
ARNOLD, A ;
PESTELL, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23589-23597
[3]  
BANERJEE U, 1997, LOOP TR RESTRUCT COM, V3, P1
[4]  
DUCY P, 1995, MOL CELL BIOL, V15, P1858
[5]   Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation [J].
Ducy, P ;
Zhang, R ;
Geoffroy, V ;
Ridall, AL ;
Karsenty, G .
CELL, 1997, 89 (05) :747-754
[6]   A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development [J].
Ducy, P ;
Starbuck, M ;
Priemel, M ;
Shen, JH ;
Pinero, G ;
Geoffroy, V ;
Amling, M ;
Karsenty, G .
GENES & DEVELOPMENT, 1999, 13 (08) :1025-1036
[7]  
Ducy P, 2000, DEV DYNAM, V219, P461, DOI 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1074>3.0.CO
[8]  
2-C
[9]   14-3-3 proteins: Structure, function, and regulation [J].
Fu, HA ;
Subramanian, RR ;
Masters, SC .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2000, 40 :617-647
[10]   CCAAT/enhancer-binding proteins (C/EBP) β and δ activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression [J].
Gutierrez, S ;
Javed, A ;
Tennant, DK ;
van Rees, M ;
Montecino, M ;
Stein, GS ;
Stein, JL ;
Lian, JB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1316-1323