Identification of cathode materials for lithium batteries guided by first-principles calculations

被引:800
作者
Ceder, G [1 ]
Chiang, YM [1 ]
Sadoway, DR [1 ]
Aydinol, MK [1 ]
Jang, YI [1 ]
Huang, B [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1038/33647
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium batteries have the highest energy density of all rechargeable batteries and are favoured in applications where low weight or small volume are desired - for example, laptop computers, cellular telephones and electric vehicles(1). One of the limitations of present commercial lithium batteries is the high cost of the LiCoO2 cathode material. Searches for a replacement material that, Like LiCoO2, intercalates lithium ions reversibly have covered most of the known lithium/transition-metal oxides, but the number of possible mixtures of these(2-5) is almost limitless, making an empirical search labourious and expensive. Here we show that first-principles calculations can instead direct the search for possible cathode materials. Through such calculations we identify a large class of new candidate materials in which non-transition metals are substituted for transition metals. The replacement with non-transition metals is driven by the realization that oxygen, rather than transition-metal ions, function as the electron acceptor upon insertion of Li. For one such material, Li(Co,Al)O-2, we predict and verify experimentally that aluminium substitution raises the cell voltage while decreasing both the density of the material and its cost.
引用
收藏
页码:694 / 696
页数:3
相关论文
共 12 条
[1]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[2]   Application of first-principles calculations to the design of rechargeable Li-batteries [J].
Ceder, G ;
Aydinol, MK ;
Kohan, AF .
COMPUTATIONAL MATERIALS SCIENCE, 1997, 8 (1-2) :161-169
[3]   Synthesis of LiCoO2 by decomposition and intercalation of hydroxides [J].
Chiang, YM ;
Jang, YI ;
Wang, HF ;
Huang, BY ;
Sadoway, DR ;
Ye, PX .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (03) :887-891
[4]   ELECTROCHEMICAL AND PHYSICAL-PROPERTIES OF THE LIXNI1-YCOYO2 PHASES [J].
DELMAS, C ;
SAADOUNE, I .
SOLID STATE IONICS, 1992, 53 (pt 1) :370-375
[5]   LINIVO4 - A 4.8 VOLT ELECTRODE MATERIAL FOR LITHIUM CELLS [J].
FEY, GTK ;
LI, W ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (09) :2279-2282
[6]   Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) :15-50
[7]  
Nazri GA, 1997, MATER RES SOC SYMP P, V453, P635
[8]   COMPARATIVE-STUDY OF LICOO2, LINI1/2CO1/2O2 AND LINIO2 FOR 4-VOLT SECONDARY LITHIUM CELLS [J].
OHZUKU, T ;
UEDA, A ;
NAGAYAMA, M ;
IWAKOSHI, Y ;
KOMORI, H .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1159-1167
[9]   Synthesis and characterization of LiAl1/4Ni3/4O2 (R(3)over-bar-m) for lithium-ion (shuttlecock) batteries [J].
Ohzuku, T ;
Ueda, A ;
Kouguchi, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (12) :4033-4039
[10]  
PISTOIA G, 1994, LITHIUM BATTERIES