Shocks in the asymmetric simple exclusion process in a discrete-time update

被引:24
作者
Pigorsch, C [1 ]
Schütz, GM
机构
[1] Univ Halle Wittenberg, Fachbereich Phys, D-06099 Halle, Germany
[2] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 44期
关键词
D O I
10.1088/0305-4470/33/44/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of a shock distribution as an initial state for a one-dimensional asymmetric simple exclusion process with sub-lattice parallel update. The time evolution of the shock distribution can be calculated exactly if the two initial densities of the shock satisfy a special relation which results from its U(q)[SU(2)] symmetry. The resulting distribution is a linear combination of shock measures. The motion of the shock position can be interpreted as if it would perform a biased discrete-time random walk, with hopping rules related to that of a single particle in the exclusion process. The shock diffusion constant and the shock velocity are calculated exactly. We obtain simple expressions for these quantities in terms of the shock densities and currents which we argue to be valid for any pair of shock densities.
引用
收藏
页码:7919 / 7933
页数:15
相关论文
共 27 条
[1]   REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS [J].
ALCARAZ, FC ;
RITTENBERG, V .
PHYSICS LETTERS B, 1993, 314 (3-4) :377-380
[2]   DIFFUSION OF LABELED PARTICLES ON ONE-DIMENSIONAL CHAINS [J].
ALEXANDER, S ;
PINCUS, P .
PHYSICAL REVIEW B, 1978, 18 (04) :2011-2012
[3]  
Barkema GT, 1996, BIOPOLYMERS, V38, P665, DOI 10.1002/(SICI)1097-0282(199605)38:5<665::AID-BIP10>3.0.CO
[4]  
2-7
[5]  
Baxter R. J., 1982, Exactly Solved Models in Statistical Mechanics Academic
[6]  
BELITSKY V, 2000, PREPRINT
[7]   COMPUTER-SIMULATION OF SHOCK-WAVES IN THE COMPLETELY ASYMMETRIC SIMPLE EXCLUSION PROCESS [J].
BOLDRIGHINI, C ;
COSIMI, G ;
FRIGIO, S ;
NUNES, MG .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :611-623
[8]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329
[9]   An exactly soluble non-equilibrium system: The asymmetric simple exclusion process [J].
Derrida, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 301 (1-3) :65-83
[10]  
DOI M, 1976, J PHYS A-MATH GEN, V9, P1479, DOI 10.1088/0305-4470/9/9/009