Ubiquitination and proteasomal degradation of endogenous and exogenous inositol 1,4,5-trisphosphate receptors in αT3-1 anterior pituitary cells

被引:53
作者
Wojcikiewicz, RJH [1 ]
Xu, Q [1 ]
Webster, JM [1 ]
Alzayady, K [1 ]
Gao, C [1 ]
机构
[1] SUNY Upstate Med Univ, Dept Pharmacol, Syracuse, NY 13210 USA
关键词
D O I
10.1074/jbc.M206607200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In alphaT3-1 mouse anterior pituitary gonadotropes, chronic activation of gonadotropin-releasing hormone (GnRH) receptors causes inositol 1,4,5-trisphosphate (InsP.) receptor down-regulation (Willars, G. B., Royall, J. E., Nahorski, S. R., El-Gehani, F., Everest, H. and McArdle, C. A. (2001) J. Biol. Chem. 276, 3123-3129). In the current study, we sought to define the mechanism behind this adaptive response. We show that GnRH induces a rapid and dramatic increase in InsP(3) receptor polyubiquitination and that proteasome inhibitors block InsP(3) receptor down-regulation and cause the accumulation of polyubiquitinated receptors. Thus, the ubiquitin/proteasome pathway is active in alphaT3-1 cells, and GnRH regulates the levels of InsP(3) receptors via this mechanism. Given these findings and further characterization of this system, we also examined the possibility that alphaT3-1 cells could be used to examine the ubiquitination of exogenous InsP(3) receptors introduced by cDNA transfection. This was found to be the case, since exogenous wild-type InsP(3) receptors, but not binding-defective mutant receptors, were polyubiquitinated in a GnRH-dependent manner, and agents that inhibited the polyubiquitination of endogenous receptors also inhibited the polyubiquitination of exogenous receptors. Further, we used this system to determine whether phosphorylation was involved in triggering InsP(3) receptor polyubiquitination. This was not the case, since mutation of serine residues 1588 and 1755 (the predominant phosphorylation sites in the type I receptor) did not inhibit polyubiquitination. In total, these data show that the ubiquitin/proteasome pathway is active in anterior pituitary cells, that this pathway targets both endogenous and exogenous InsP(3) receptors in GnRH-stimulated alphaT3-1 cells, and that, in contrast to the situation for many other substrates, phosphorylation does not trigger InsP(3) receptor polyubiquitination.
引用
收藏
页码:940 / 947
页数:8
相关论文
共 49 条
[1]   CLINICAL-APPLICATIONS OF GNRH AND ITS ANALOGS [J].
BARBIERI, RL .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 1992, 3 (01) :30-34
[2]   Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation [J].
Bays, NW ;
Gardner, RG ;
Seelig, LP ;
Joazeiro, CA ;
Hampton, RY .
NATURE CELL BIOLOGY, 2001, 3 (01) :24-29
[3]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[4]   Angiotensin II-induced down-regulation of inositol trisphosphate receptors in WB rat liver epithelial cells - Evidence for involvement of the proteasome pathway [J].
Bokkala, S ;
Joseph, SK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (19) :12454-12461
[5]   Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin a but not to increases in intracellular Ca2+ or egg activation [J].
Brind, S ;
Swann, K ;
Carroll, J .
DEVELOPMENTAL BIOLOGY, 2000, 223 (02) :251-265
[6]   The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum associated protein degradation [J].
Dürr, G ;
Strayle, J ;
Plemper, R ;
Elbs, S ;
Klee, SK ;
Catty, P ;
Wolf, DH ;
Rudolph, HK .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (05) :1149-1162
[7]   The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum [J].
Fang, SY ;
Ferrone, M ;
Yang, CH ;
Jensen, JP ;
Tiwari, S ;
Weissman, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14422-14427
[8]   Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53 [J].
Fang, SY ;
Jensen, JP ;
Ludwig, RL ;
Vousden, KH ;
Weissman, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :8945-8951
[9]   In vivo action of the HRD ubiquitin ligase complex:: Mechanisms of endoplasmic reticulum quality control and sterol regulation [J].
Gardner, RG ;
Shearer, AG ;
Hampton, RY .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (13) :4276-4291
[10]   Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ [J].
Haug, LS ;
Jensen, V ;
Hvalby, O ;
Walaas, SI ;
Ostvold, AC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (11) :7467-7473