Substrate regulation of soil respiration in a tallgrass prairie: Results of a clipping and shading experiment

被引:251
作者
Wan, SQ [1 ]
Luo, YQ [1 ]
机构
[1] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA
关键词
carbon substrate; clipping; rhizosphere respiration; shading; tallgrass prairie; temperature sensitivity;
D O I
10.1029/2002GB001971
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] Changes in soil respiration, one of the major fluxes of global carbon cycling, could significantly slow down or accelerate the increase in atmospheric CO2, with consequent feedbacks to climate change. It is critical to understand how substrate availability regulates soil respiration in projecting the response of carbon cycling to changed climate. We conducted a clipping and shading experiment for 1 year in a tallgrass prairie of the Great Plains, United States, to manipulate substrate supply to soil respiration. Our results showed that reduced substrate supply under clipping and/or shading significantly decreased soil respiration at all the timescales (diurnal, transient, and annual) irrespective of the minor concurrent changes in soil temperature and moisture. Annual mean soil respiration decreased significantly by 33, 23, and 43% for the clipping, shading, and clipping plus shading treatments, respectively. Temperature sensitivity of soil respiration decreased from 1.93 in the control plots to 1.88, 1.75, and 1.83 in the clipped, shaded, and clipped plus shaded plots, respectively. Rhizosphere respiration, respiration from decomposition of aboveground litter, and respiration from oxidation of soil organic matter and dead roots accounted for 30, 14, and 56% of annual mean soil respiration, respectively. Rhizosphere respiration was more sensitive to temperature than the other two components. Our results suggest a critical role of substrate supply in regulating soil respiration and its temperature sensitivity.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Response of root respiration to changes in temperature and its relevance to global warming [J].
Atkin, OK ;
Edwards, EJ ;
Loveys, BR .
NEW PHYTOLOGIST, 2000, 147 (01) :141-154
[2]   Roots exert a strong influence on the temperature sensitivity of soil respiration [J].
Boone, RD ;
Nadelhoffer, KJ ;
Canary, JD ;
Kaye, JP .
NATURE, 1998, 396 (6711) :570-572
[3]   CONTRIBUTIONS OF ABOVEGROUND LITTER, BELOWGROUND LITTER, AND ROOT RESPIRATION TO TOTAL SOIL RESPIRATION IN A TEMPERATURE MIXED HARDWOOD FOREST [J].
BOWDEN, RD ;
NADELHOFFER, KJ ;
BOONE, RD ;
MELILLO, JM ;
GARRISON, JB .
CANADIAN JOURNAL OF FOREST RESEARCH, 1993, 23 (07) :1402-1407
[4]   Responses of soil respiration to clipping and grazing in a tallgrass prairie [J].
Bremer, DJ ;
Ham, JM ;
Owensby, CE ;
Knapp, AK .
JOURNAL OF ENVIRONMENTAL QUALITY, 1998, 27 (06) :1539-1548
[5]   ABIOTIC CONTROLS OF SOIL RESPIRATION BENEATH AN 18-YEAR-OLD PINUS-RADIATA STAND IN SOUTHEASTERN AUSTRALIA [J].
CARLYLE, JC ;
THAN, UB .
JOURNAL OF ECOLOGY, 1988, 76 (03) :654-662
[6]   Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland [J].
Craine J.M. ;
Wedin D.A. ;
Chapin III F.S. .
Plant and Soil, 1999, 207 (1) :77-86
[7]   Allocation of carbon to shoots, roots, soil and rhizosphere respiration by barrel medic (Medicago truncatula) before and after defoliation [J].
Crawford, MC ;
Grace, PR ;
Oades, JM .
PLANT AND SOIL, 2000, 227 (1-2) :67-75
[8]   Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J].
Davidson, EA ;
Belk, E ;
Boone, RD .
GLOBAL CHANGE BIOLOGY, 1998, 4 (02) :217-227
[9]   SOIL CARBON DYNAMICS IN A MIXED DECIDUOUS FOREST FOLLOWING CLEAR-CUTTING WITH AND WITHOUT RESIDUE REMOVAL [J].
EDWARDS, NT ;
ROSSTODD, BM .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1983, 47 (05) :1014-1021
[10]   Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature [J].
Giardina, CP ;
Ryan, MG .
NATURE, 2000, 404 (6780) :858-861