Calcineurin-dependent pathways have been implicated in the hypertrophic response of skeletal muscle to functional overload (OV) (Dunn, S.E., J.L. Burns, and R.N. Michel. 1999. J. Biol. Chem. 274:21908-21912), Here we show that skeletal muscles overexpressing an activated form of calcineurin (CnA*) exhibit a phenotype indistinguishable from wild-type counterparts under normal weightbearing conditions and respond to OV with a similar doubling in cell size and slow fiber number. These adaptations occurred despite the fact that CnA* muscles displayed threefold higher calcineurin activity and enhanced dephosphorylation of the calcineurin targets NFATc1, MEF2A, and MEF2D. Moreover, when calcineurin signaling is compromised with cyclosporin A, muscles from OV wildtype mice display a lower molecular weight form of CnA, originally detected in failing hearts, whereas CnA* muscles are spared this manifestation. We also show that OV-induced growth and type transformations are prevented in muscle fibers of transgenic mice overexpressing a peptide that inhibits calmodulin from signaling to target enzymes. Taken together, these findings provide evidence that both calcineurin and its activity-linked upstream signaling elements are crucial for muscle adaptations to OV and that, unless significantly compromised, endogenous levels of this enzyme can accommodate large fluctuations in upstream calcium-dependent signaling events.