Tetrodotoxin-sensitive and -resistant Na+ channel currents in subsets of small sensory neurons of rats

被引:33
作者
Wu, ZZ [1 ]
Pan, HL [1 ]
机构
[1] Penn State Univ, Coll Med, Dept Anesthesiol, Milton S Hershey Med Ctr, Hershey, PA 17033 USA
关键词
nociceptor; dorsal root ganglia; neurotrophin; sodium channel;
D O I
10.1016/j.brainres.2004.09.051
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Voltage-activated Na+ channels in the primary sensory neurons are important for generation of action potentials and regulation of neurotransmitter release. The Na+ channels expressed in different types of dorsal root ganglion (DRG) neurons are not fully known. In this study, we determined the possible difference in tetrodotoxin-sensitive (TTX-S) and -resistant (TTX-R) Na+ channel currents between isolectin B4 (IB4)-positive and IB4-negative small DRG neurons. Whole-cell voltage- and current-clamp recordings were performed in acutely isolated DRG neurons labeled with and without IB4 conjugated to Alexa Fluor 594. The peak Na+ current density was significantly higher in IB4-negative than IB4-positive DRG neurons. While all the IB4-negative neurons had a prominent TTX-S Na+ current, the TTX-R Na+ current was present in most IB4-positive cells. Additionally, the evoked action potential had a higher activation threshold and a longer duration in IB4-positive than IB4-negative neurons. TTX had no effect on the evoked action potential in IB4-Positive neurons, but it inhibited the action potential generation in about 50% IB4-negative neurons. This study provides complementary new information that there is a distinct difference in the expression level of TTX-S and TTX-R Na+ channels between IB4-negative than IB4-positive small-diameter DRG neurons. This difference in the density of TTX-R Na+ channels is responsible for the distinct membrane properties of these two types of nociceptive neurons. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 258
页数:8
相关论文
共 38 条
[1]   A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons [J].
Akopian, AN ;
Sivilotti, L ;
Wood, JN .
NATURE, 1996, 379 (6562) :257-262
[2]   IMMUNOCYTOCHEMICAL LOCALIZATION OF TRKA RECEPTORS IN CHEMICALLY IDENTIFIED SUBGROUPS OF ADULT-RAT SENSORY NEURONS [J].
AVERILL, S ;
MCMAHON, SB ;
CLARY, DO ;
REICHARDT, LF ;
PRIESTLEY, JV .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (07) :1484-1494
[3]   Involvement of Na+ channels in pain pathways [J].
Baker, MD ;
Wood, JN .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (01) :27-31
[4]   Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons [J].
Benn, SC ;
Costigan, M ;
Tate, S ;
Fitzgerald, M ;
Woolf, CJ .
JOURNAL OF NEUROSCIENCE, 2001, 21 (16) :6077-6085
[5]  
Bennett DLH, 1998, J NEUROSCI, V18, P3059
[6]   Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs [J].
Black, JA ;
DibHajj, S ;
McNabola, K ;
Jeste, S ;
Rizzo, MA ;
Kocsis, JD ;
Waxman, SG .
MOLECULAR BRAIN RESEARCH, 1996, 43 (1-2) :117-131
[7]  
Blair NT, 2002, J NEUROSCI, V22, P10277
[8]   The expression of P2X3 purinoreceptors in sensory neurons:: Effects of axotomy and glial-derived neurotrophic factor [J].
Bradbury, EJ ;
Burnstock, G ;
McMahon, SB .
MOLECULAR AND CELLULAR NEUROSCIENCE, 1998, 12 (4-5) :256-268
[9]   MICE LACKING NERVE GROWTH-FACTOR DISPLAY PERINATAL LOSS OF SENSORY AND SYMPATHETIC NEURONS YET DEVELOP BASAL FOREBRAIN CHOLINERGIC NEURONS [J].
CROWLEY, C ;
SPENCER, SD ;
NISHIMURA, MC ;
CHEN, KS ;
PITTSMEEK, S ;
ARMANINI, MP ;
LING, LH ;
MCMAHON, SB ;
SHELTON, DL ;
LEVINSON, AD ;
PHILLIPS, HS .
CELL, 1994, 76 (06) :1001-1011
[10]  
Cummins TR, 2000, J NEUROSCI, V20, P8754