Sine-Gordon revisited

被引:27
作者
Dimock, J [1 ]
Hurd, TR
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14214 USA
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
来源
ANNALES HENRI POINCARE | 2000年 / 1卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s000230050005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the sine-Gordon model in two dimensional space time in two different domains. For beta > 8 pi and weak coupling, we introduce an ultraviolet cutoff and study the infrared behavior. A renormalization group analysis shows that the model is asymptotically free in the infrared. For beta < 8 pi and weak coupling, we introduce an infrared cutoff and study the ultraviolet behavior. A renormalization group analysis shows that the model is asymptotically free in the ultraviolet.
引用
收藏
页码:499 / 541
页数:43
相关论文
共 21 条
[1]  
ABDESSELAM A, 1995, CONSTRUCTIVE PHYSICS, P311
[2]   ON THE MASSIVE SINE-GORDON EQUATION IN THE 1ST FEW REGIONS OF COLLAPSE [J].
BENFATTO, G ;
GALLAVOTTI, G ;
NICOLO, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (03) :387-410
[3]   Estimates on renormalization group transformations [J].
Brydges, D ;
Dimock, J ;
Hurd, TR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (04) :756-793
[4]   A non-Gaussian fixed point for φ4 in 4-ε dimensions [J].
Brydges, D ;
Dimock, J ;
Hurd, TR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (01) :111-156
[5]   GRAD PHI-PERTURBATIONS OF MASSLESS GAUSSIAN FIELDS [J].
BRYDGES, D ;
YAU, HT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 129 (02) :351-392
[6]   THE SHORT-DISTANCE BEHAVIOR OF (PHI(4))(3) [J].
BRYDGES, D ;
DIMOCK, J ;
HURD, TR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :143-186
[7]  
BRYDGES D, 1994, MATH QUANTUM THEORY, V1
[8]  
BRYDGES D, CONDMAT9904122
[9]  
BRYDGES DC, 1994, HELV PHYS ACTA, V67, P43
[10]   MAYER EXPANSIONS AND THE HAMILTON-JACOBI EQUATION [J].
BRYDGES, DC ;
KENNEDY, T .
JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (1-2) :19-49