A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity

被引:677
作者
Johnston, Helinor J. [1 ,2 ]
Hutchison, Gary [2 ]
Christensen, Frans M. [3 ]
Peters, Sheona [4 ]
Hankin, Steve [4 ]
Stone, Vicki [2 ]
机构
[1] Dept Environm Food & Rural Affairs, London SW1P 3JR, England
[2] Edinburgh Napier Univ, Sch Life Sci, Ctr Nano Safety, Edinburgh, Midlothian, Scotland
[3] IHCP, European Commiss DG Joint Res Ctr JRC, Nanobiosci Univ, Ispra, Italy
[4] Inst Occupat Med, Edinburgh EH8 9SV, Midlothian, Scotland
关键词
Gold; metals; nanoparticle; nanotoxicology; silver; INHALATION TOXICITY; CELLULAR UPTAKE; NANOPARTICLES; CYTOTOXICITY; EXPOSURE; ARGYRIA; SIZE; DNA; BIODISTRIBUTION; GENOTOXICITY;
D O I
10.3109/10408440903453074
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
This review is concerned with evaluating the toxicity associated with human exposure to silver and gold nanoparticles (NPs), due to the relative abundance of toxicity data available for these particles, when compared to other metal particulates. This has allowed knowledge on the current understanding of the field to be gained, and has demonstrated where gaps in knowledge are. It is anticipated that evaluating the hazards associated with silver and gold particles will ultimately enable risk assessments to be completed, by combining this information with knowledge on the level of human exposure. The quantity of available hazard information for metals is greatest for silver particulates, due to its widespread inclusion within a number of diverse products (including clothes and wound dressings), which primarily arises from its antibacterial behaviour. Gold has been used on numerous occasions to assess the biodistribution and cellular uptake of NPs following exposure. Inflammatory, oxidative, genotoxic, and cytotoxic consequences are associated with silver particulate exposure, and are inherently linked. The primary site of gold and silver particulate accumulation has been consistently demonstrated to be the liver, and it is therefore relevant that a number of in vitro investigations have focused on this potential target organ. However, in general there is a lack of in vivo and in vitro toxicity information that allows correlations between the findings to be made. Instead a focus on the tissue distribution of particles following exposure is evident within the available literature, which can be useful in directing appropriate in vitro experimentation by revealing potential target sites of toxicity. The experimental design has the potential to impact on the toxicological observations, and in particular the use of excessively high particle concentrations has been observed. As witnessed for other particle types, gold and silver particle sizes are influential in dictating the observed toxicity, with smaller particles exhibiting a greater response than their larger counterparts, and this is likely to be driven by differences in particle surface area, when administered at an equal-mass dose. A major obstacle, at present, is deciphering whether the responses related to silver nanoparticulate exposure derive from their small size, or particle dissolution contributes to the observed toxicity. Alternatively, a combination of both may be responsible, as the release of ions would be expected to be greater for smaller particles.
引用
收藏
页码:328 / 346
页数:19
相关论文
共 49 条
[1]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[2]   Cellular responses induced by silver nanoparticles:: In vitro studies [J].
Arora, S. ;
Jain, J. ;
Rajwade, J. M. ;
Paknikar, K. M. .
TOXICOLOGY LETTERS, 2008, 179 (02) :93-100
[3]   Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells [J].
Arora, S. ;
Jain, J. ;
Rajwade, J. M. ;
Paknikar, K. M. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2009, 236 (03) :310-318
[4]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290
[5]  
BARILAN O, 2009, SMALL
[6]   In vitro cytotoxicity of nanoparticles in mammalian germline stem cells [J].
Braydich-Stolle, L ;
Hussain, S ;
Schlager, JJ ;
Hofmann, MC .
TOXICOLOGICAL SCIENCES, 2005, 88 (02) :412-419
[7]  
*BSI, 2007, PAS 136 TERM NAN
[8]   Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel [J].
Bury, NR ;
Wood, CM .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1999, 277 (05) :R1385-R1391
[9]   Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species [J].
Carlson, C. ;
Hussain, S. M. ;
Schrand, A. M. ;
Braydich-Stolle, L. K. ;
Hess, K. L. ;
Jones, R. L. ;
Schlager, J. J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (43) :13608-13619
[10]   Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles [J].
Cha, Kyungeun ;
Hong, Hye-Won ;
Choi, Yeon-Gil ;
Lee, Min Joo ;
Park, Jong Hoon ;
Chae, Hee-Kwon ;
Ryu, Gyuha ;
Myung, Heejoon .
BIOTECHNOLOGY LETTERS, 2008, 30 (11) :1893-1899