Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs

被引:120
作者
Hecht, Valerie [1 ]
Knowles, Claire L. [1 ]
Schoor, Jacqueline K. Vander [1 ]
Liew, Lim Chee [1 ]
Jones, Sarah E. [1 ]
Lambert, Misty J. M. [1 ]
Weller, James L. [1 ]
机构
[1] Univ Tasmania, Sch Plant Sci, Hobart, Tas 7001, Australia
关键词
D O I
10.1104/pp.107.096818
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genes controlling the transition to flowering have been studied in several species, including Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but have not yet received much attention in legumes. Here, we describe a new allelic series of late-flowering, photoperiod- insensitive mutants in the pea ( Pisum sativum) LATE BLOOMER1 ( LATE1) gene and show that LATE1 is an ortholog of Arabidopsis GIGANTEA. Mutants display defects in phytochrome B-dependent deetiolation under red light and in the diurnal regulation of pea homologs of several Arabidopsis circadian clock genes, including TIMING OF CAB1, EARLY FLOWERING4, and CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL. LATE1 itself shows strongly rhythmic expression with a small but distinct acute peak following dark-to-light transfer. Mutations in LATE1 prevent the induction of a FLOWERING LOCUS T (FT) homolog FTL in long days but cause only minor alteration to the rhythmic expression pattern of the only known group Ia CONSTANS homolog COLa. The late-flowering phenotype of late1 mutants can be completely rescued by grafting to the wild type, but this rescue is not associated with a significant increase in FTL transcript level in shoot apices. Genetic interactions of late1 with the photoperiod-insensitive, early-flowering sterile nodes (sn) mutant and impairment of the LATE1 diurnal expression rhythm in sn plants suggest that SN may also affect the circadian clock. These results show that several functions of Arabidopsis GIGANTEA are conserved in its pea ortholog and demonstrate that genetic pathways for photoperiodic flowering are likely to be conserved between these two species. They also suggest that in addition to its role in the floral transition, LATE1 also acts throughout reproductive development.
引用
收藏
页码:648 / 661
页数:14
相关论文
共 74 条
[1]   CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis [J].
An, HL ;
Roussot, C ;
Suárez-López, P ;
Corbesler, L ;
Vincent, C ;
Piñeiro, M ;
Hepworth, S ;
Mouradov, A ;
Justin, S ;
Turnbull, C ;
Coupland, G .
DEVELOPMENT, 2004, 131 (15) :3615-3626
[2]   The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA [J].
Ben-Naim, O ;
Eshed, R ;
Parnis, A ;
Teper-Bamnolker, P ;
Shalit, A ;
Coupland, G ;
Samach, A ;
Lifschitz, E .
PLANT JOURNAL, 2006, 46 (03) :462-476
[3]  
Beveridge CA, 1996, PHYSIOL PLANTARUM, V96, P637, DOI 10.1111/j.1399-3054.1996.tb00237.x
[4]   Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis [J].
Bläsing, OE ;
Gibon, Y ;
Günther, M ;
Höhne, M ;
Morcuende, R ;
Osuna, D ;
Thimm, O ;
Usadel, B ;
Scheible, WR ;
Stitt, M .
PLANT CELL, 2005, 17 (12) :3257-3281
[5]   A thermosensory pathway controlling flowering time in Arabidopsis thaliana [J].
Blázquez, MA ;
Ahn, JH ;
Weigel, D .
NATURE GENETICS, 2003, 33 (02) :168-171
[6]   CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees [J].
Böhlenius, H ;
Huang, T ;
Charbonnel-Campaa, L ;
Brunner, AM ;
Jansson, S ;
Strauss, SH ;
Nilsson, O .
SCIENCE, 2006, 312 (5776) :1040-1043
[7]   Revisiting tree maturation and floral initiation in the poplar functional genomics era [J].
Brunner, AM ;
Nilsson, O .
NEW PHYTOLOGIST, 2004, 164 (01) :43-51
[8]   The SELF-PRUNING gene family in tomato [J].
Carmel-Goren, L ;
Liu, YS ;
Lifschitz, E ;
Zamir, D .
PLANT MOLECULAR BIOLOGY, 2003, 52 (06) :1215-1222
[9]   Regulation of flowering time by light quality [J].
Cerdán, PD ;
Chory, J .
NATURE, 2003, 423 (6942) :881-885
[10]   The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana [J].
Doyle, MR ;
Davis, SJ ;
Bastow, RM ;
McWatters, HG ;
Kozma-Bognár, L ;
Nagy, F ;
Millar, AJ ;
Amasino, RM .
NATURE, 2002, 419 (6902) :74-77