The question of knowing how the nervous system transforms a desired position and orientation of the hand into a set of arm and forearm angles has been widely addressed during the last few decades. Despite this fact, it still remains unclear as to whether a unique posture of the arm is associated with every location and orientation of the hand in space. The main objective of the present study was to address this question. To this end, we studied a prehension task requiring human subjects to reach and grasp a cylindrical object presented at different locations, along variable orientations. In contrast to previous investigations, we considered the influence of the initial position of the hand. Results showed that the posture of the arm: (1) varied systematically as a function of the movement starting point; (2) was stereotyped for a particular subject given a configuration of the object and a movement starting location; (3) was altered at both the distal and proximal levels when the orientation of the object was changed; (4) was similarly influenced by the experimental factors in all the subjects, except one. When considered together, the previous results support three main conclusions: First, the nervous system solves the joint redundancy problem using fixed strategies. Second, these fixed strategies do not provide a single correspondence between hand configuration and arm posture. Third, the position and orientation of the hand in space are unlikely to be controlled through separate independent neural pathways.