RNA interference toward UMP1 induces proteasome inhibition in Saccharomyces cerevisiae:: evidence for protein oxidation and autophagic cell death

被引:27
作者
Chen, QH
Ding, QX
Thorpe, J
Dohmen, RE
Keller, JN
机构
[1] Univ Kentucky, Dept Anat & Neurobiol, Lexington, KY 40536 USA
[2] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40536 USA
[3] Univ Cologne, Inst Genet, D-5000 Cologne, Germany
关键词
aging; autophagy; cytotoxicity; oxidative stress; proteasome; protein oxidation; Saccharomyces cerevisiae; free radicals;
D O I
10.1016/j.freeradbiomed.2004.10.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The proteasome is a large intracellular protease that is responsible for a large portion of intracellular proteolysis, in particular the degradation of a majority of short-lived and oxidized proteins. Inhibition of proteasome function occurs in response to multiple stressors, with proteasome inhibition sufficient for the induction of a wide range of cytotoxic processes. Although considerable advances have been made in the understanding of the proteasome, and the effects of proteasome inhibition, our understanding of these topics in Saccharomyces cerevisiae has been slowed by the inability of proteasome inhibitors to penetrate and/or be retained in S. cerevisiae. Expression of UMP1 is necessary for proteasome assembly in S. cerevisiae, and in the present study we examined the effectiveness of RNA interference for UMP1 as a means of achieving proteasome inhibition in S. cerevisiae. Induction of RNA interference for UMP1 resulted in a dramatic decrease in UMP1 at the protein level, which was not observed in cells transformed with control vector. RNA interference caused an impairment in proteasome function, and increase in protein oxidation, with proteins involved in both stress response and energy metabolism showing increased oxidation. Interestingly, RNA interference induced cell death that seemed to be autophagic in nature, suggesting possible cross talk between the proteasome and the autophagic proteolytic pathways. Taken together, these data indicate that RNA interference may be a useful model with which to study the effects of proteasome inhibition in S. cerevisiae and demonstrate the ability of proteasome inhibition to induce cytotoxic alterations in S. cerevisiae. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 44 条
[1]   The proteasome: structure, function, and role in the cell [J].
Adams, J .
CANCER TREATMENT REVIEWS, 2003, 29 :3-9
[2]   RNA interference: Biology, mechanism, and applications [J].
Agrawal, N ;
Dasaradhi, PVN ;
Mohmmed, A ;
Malhotra, P ;
Bhatnagar, RK ;
Mukherjee, SK .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2003, 67 (04) :657-+
[3]   Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals [J].
Benaroudj, N ;
Lee, DH ;
Goldberg, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :24261-24267
[4]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[5]   The proteasome [J].
Bochtler, M ;
Ditzel, L ;
Groll, M ;
Hartmann, C ;
Huber, R .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1999, 28 :295-+
[6]  
CHEN Q, 2004, IN PRESS BIOGERONTOL
[7]   Proteasome synthesis and assembly are required for survival during stationary phase [J].
Chen, QH ;
Thorpe, J ;
Ding, QX ;
El-Amouri, IS ;
Keller, JN .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 37 (06) :859-868
[8]   Central role of the proteasome in senescence and survival of human fibroblasts - Induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation [J].
Chondrogianni, N ;
Stratford, FLL ;
Trougakos, IP ;
Friguet, B ;
Rivett, AJ ;
Gonos, ES .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (30) :28026-28037
[9]   Selectivity of protein oxidative damage during aging in Drosophila melanogaster [J].
Das, N ;
Levine, RL ;
Orr, WC ;
Sohal, RS .
BIOCHEMICAL JOURNAL, 2001, 360 (360) :209-216
[10]  
Deere D, 1998, YEAST, V14, P147, DOI 10.1002/(SICI)1097-0061(19980130)14:2<147::AID-YEA207>3.3.CO