Role of the small GTPase RhoA in the hypoxiainduced decrease of plasma membrane Na, K-ATPase in A549 cells

被引:46
作者
Dada, Laura A. [1 ]
Novoa, Eva [1 ]
Lecuona, Emilia [1 ]
Sun, Haiying [1 ]
Sznajder, Jacob I. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Div Pulm & Crit Care Med, Chicago, IL 60611 USA
关键词
Na; K-ATPase; ROS; hypoxia; endocytosis; alveolar epithelium;
D O I
10.1242/jcs.003038
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Hypoxia impairs alveolar fluid reabsorption by promoting Na,K-ATPase endocytosis, from the plasma membrane of alveolar epithelial cells. The present study was designed to determine whether hypoxia induces Na, K-ATPase endocytosis via reactive oxygen species (ROS)-mediated RhoA activation. In A549 cells, RhoA activation occurred within 15 minutes of cells exposure to hypoxia. This activation was inhibited in cells infected with adenovirus coding for gluthatione peroxidase (an H2O2 scavenger), in mitochondria depleted (rho(0)) cells or cells expressing decreased levels of the Rieske iron-sulfur protein (inhibitor of mitochondrial complex III), which suggests a role for mitochondrial ROS. Moreover, exogenous H2O2 treatment during normoxia mimicked the effects of hypoxia on RhoA, further supporting a role for ROS. Cells expressing dominant negative RhoA failed to endocytose the Na, K-ATPase during hypoxia or after H2O2 treatment. Na, K-ATPase endocytosis was also prevented in cells treated with Y-27632, a Rho-associated kinase (ROCK) inhibitor, and in cells expressing dominant negative ROCK. In summary, we provide evidence that in human alveolar epithelial cells exposed to hypoxia, RhoA/ROCK activation is necessary for Na, K-ATPase endocytosis via a mechanism that requires mitochondrial ROS.
引用
收藏
页码:2214 / 2222
页数:9
相关论文
共 63 条
[1]   CYTOPLASMIC DYNEIN-DEPENDENT VESICULAR TRANSPORT FROM EARLY TO LATE ENDOSOMES [J].
ANIENTO, F ;
EMANS, N ;
GRIFFITHS, G ;
GRUENBERG, J .
JOURNAL OF CELL BIOLOGY, 1993, 123 (06) :1373-1387
[2]   Endocytic traffic in polarized epithelial cells: Role of the actin and microtubule cytoskeleton [J].
Apodaca, G .
TRAFFIC, 2001, 2 (03) :149-159
[3]   Coupling actin dynamics to the endocytic process in Saccharomyces cerevisiae [J].
Ayscough, KR .
PROTOPLASMA, 2005, 226 (1-2) :81-88
[4]   Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of α-subunits in lung alveolar cells [J].
Bertorello, AM ;
Ridge, KM ;
Chibalin, AV ;
Katz, AI ;
Sznajder, JI .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1999, 276 (01) :L20-L27
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation [J].
Brunelle, JK ;
Bell, EL ;
Quesada, NM ;
Vercauteren, K ;
Tiranti, V ;
Zeviani, M ;
Scarpulla, RC ;
Chandel, NS .
CELL METABOLISM, 2005, 1 (06) :409-414
[7]   Hibernation during hypoxia in cardiomyocytes -: Role of mitochondria as the O2 sensor [J].
Budinger, GRS ;
Duranteau, J ;
Chandel, NS ;
Schumacker, PT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (06) :3320-3326
[8]  
CHAN WCW, 2000, P SOC PHOTO-OPT INS, V1, P2
[9]   Mitochondrial reactive oxygen species trigger hypoxia-induced transcription [J].
Chandel, NS ;
Maltepe, E ;
Goldwasser, E ;
Mathieu, CE ;
Simon, MC ;
Schumacker, PT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11715-11720
[10]   Cellular oxygen sensing by mitochondria: old questions, new insight [J].
Chandel, NS ;
Schumacker, PT .
JOURNAL OF APPLIED PHYSIOLOGY, 2000, 88 (05) :1880-1889