Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport

被引:142
作者
Cartee, Gregory D.
Wojtaszewski, Jorgen F. P.
机构
[1] Univ Michigan, Div Kinesiol, Muscle Biol Lab, Ann Arbor, MI 48109 USA
[2] Univ Copenhagen, Copenhagen Muscle Res Ctr, Exercise & Sport Res Inst, Copenhagen, Denmark
关键词
exercise; AS160; glucose transport; protein kinase B; insulin signaling; AMP-activated protein kinase; insulin sensitivity;
D O I
10.1139/H07-026
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Insulin and exercise, the most important physiological stimuli to increase glucose transport in skeletal muscle, trigger a redistribution of GLUT4 glucose transporter proteins from the cell interior to the cell surface, thereby increasing glucose transport capacity. The most distal insulin signaling protein that has been linked to GLUT4 translocation, Akt substrate of 160 kDa (AS160), becomes phosphorylated in insulin-stimulated 3T3-L1 adipocytes; this is important for insulin-stimulated GLUT4 translocation and glucose transport. Insulin also induces a rapid and dose-dependent increase in AS160 phosphorylation in skeletal muscle. Available data from skeletal muscle support the concepts developed in adipocytes with regard to the role AS160 plays in the regulation of insulin-stimulated glucose transport. In vivo exercise, in vitro contractions, or in situ contractions can also stimulate AS160 phosphorylation. AMP-activated protein kinase (AMPK) is likely important for phosphorylating AS160 in response to exercise/contractile activity, whereas Akt2 appears to be important for insulin-stimulated AS 160 phosphorylation in muscle. Evidence of a role for AS160 in exercise/contraction-stimulated glucose uptake is currently inconclusive. The distinct signaling pathways that are Stimulated by insulin and exercise/contraction converge at AS160. Although AS160 phosphorylation is apparently important for insulin-stimulated GLUT4 translocation and glucose transport, it is uncertain whether elevated AS160 phosphorylation plays a similar role with exercise/contraction.
引用
收藏
页码:557 / 566
页数:10
相关论文
共 67 条
[1]   Prolonged incubation in PUGNAc results in increased protein O-linked glycosylation and insulin resistance in rat skeletal muscle [J].
Arias, EB ;
Kim, J ;
Cartee, GD .
DIABETES, 2004, 53 (04) :921-930
[2]   Isoform-specific regulation of 5′ AMP-activated protein kinase in skeletal muscle from obese Zucker (fa/fa) rats in response to contraction [J].
Barnes, BR ;
Ryder, JW ;
Steiler, TL ;
Fryer, LGD ;
Carling, D ;
Zierath, JR .
DIABETES, 2002, 51 (09) :2703-2708
[3]   Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle [J].
Birk, J. B. ;
Wojtaszewski, J. F. P. .
JOURNAL OF PHYSIOLOGY-LONDON, 2006, 577 (03) :1021-1032
[4]   IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients [J].
Bouzakri, K ;
Karlsson, HKR ;
Vestergaard, H ;
Madsbad, S ;
Christiansen, E ;
Zierath, JR .
DIABETES, 2006, 55 (03) :785-791
[5]   siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle [J].
Bouzakri, Karim ;
Zachrisson, Anna ;
Al-Khalili, Lubna ;
Zhang, Bei B. ;
Koistinen, Heikki A. ;
Krook, Anna ;
Zierath, Juleen R. .
CELL METABOLISM, 2006, 4 (01) :89-96
[6]   GLUCOSE-UPTAKE AND GLUT-4 PROTEIN DISTRIBUTION IN SKELETAL-MUSCLE OF THE OBESE ZUCKER RAT [J].
BROZINICK, JT ;
ETGEN, GJ ;
YASPELKIS, BB ;
IVY, JL .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (01) :R236-R243
[7]   Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle [J].
Brozinick, JT ;
Birnbaum, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) :14679-14682
[8]   A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance [J].
Bruning, JC ;
Michael, MD ;
Winnay, JN ;
Hayashi, T ;
Horsch, D ;
Accili, D ;
Goodyear, LJ ;
Kahn, CR .
MOLECULAR CELL, 1998, 2 (05) :559-569
[9]   Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity [J].
Bruss, MD ;
Arias, EB ;
Lienhard, GE ;
Cartee, GD .
DIABETES, 2005, 54 (01) :41-50
[10]   MUSCLE GLUCOSE-TRANSPORT - INTERACTIONS OF INVITRO CONTRACTIONS, INSULIN, AND EXERCISE [J].
CONSTABLE, SH ;
FAVIER, RJ ;
CARTEE, GD ;
YOUNG, DA ;
HOLLOSZY, JO .
JOURNAL OF APPLIED PHYSIOLOGY, 1988, 64 (06) :2329-2332