A mechanism-based inactivator of glycoside hydrolases involving formation of a transient non-classical carbocation

被引:22
作者
Chakladar, Saswati [1 ]
Wang, Yi [1 ]
Clark, Thomas [1 ]
Cheng, Lydia [2 ]
Ko, Shirley [1 ]
Vocadlo, David J. [1 ,2 ]
Bennet, Andrew J. [1 ]
机构
[1] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC V5A 1S6, Canada
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
加拿大自然科学与工程研究理事会;
关键词
TRANSITION-STATE; CATALYZED HYDROLYSIS; ALPHA-GALACTOSIDASE; PYRIDINIUM SALTS; IN-SITU; INHIBITORS; DERIVATIVES; CYCLOPROPYLCARBINYL; CHEMISTRY; PROBES;
D O I
10.1038/ncomms6590
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The design of mechanism-based enzyme inactivators to generate chemical probes for biological research is an important challenge in carbohydrate chemistry. Here we describe the synthesis and biological evaluation of a novel carbocyclic mechanism-based inactivator of galactosidases (glycoside hydrolase families 27 and 36). Upon catalysis of this unnatural substrate, a transient non-classical carbocation forms within the enzyme active site. We show that the inactivation event, which proceeds via a bicyclobutonium ion intermediate, leads to a single alkylation event that occurs on the enzymatic nucleophile, an aspartic acid residue in this case. We also show that the catalytic proficiencies for enzymatic hydrolysis of substrates and inactivation by our bicyclo[4.1.0] heptyl analogue of galactose differ by only a factor of 20. This inactivator has the potential for further development as a useful biological research tool for both basic research and biotechnological applications.
引用
收藏
页数:8
相关论文
共 46 条
[1]  
[Anonymous], 1987, MECH THEORY ORGANIC
[2]   MECHANISM IN CARBOHYDRATE CHEMISTRY [J].
CAPON, B .
CHEMICAL REVIEWS, 1969, 69 (04) :407-+
[3]   Transition State Analysis of Vibrio cholerae Sialidase-Catalyzed Hydrolyses of Natural Substrate Analogues [J].
Chan, Jefferson ;
Lewis, Andrew R. ;
Indurugalla, Deepani ;
Schur, Melissa ;
Wakarchuk, Warren ;
Bennet, Andrew J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (08) :3748-3757
[4]   Biochemical analysis of Thermotoga maritima GH36 α-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases [J].
Comfort, Donald A. ;
Bobrov, Kirill S. ;
Ivanen, Dina R. ;
Shabalin, Konstantin A. ;
Harris, James M. ;
Kulminskaya, Anna A. ;
Brumer, Harry ;
Kelly, Robert M. .
BIOCHEMISTRY, 2007, 46 (11) :3319-3330
[5]   An evolving hierarchical family classification for glycosyltransferases [J].
Coutinho, PM ;
Deleury, E ;
Davies, GJ ;
Henrissat, B .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 328 (02) :307-317
[6]  
Davies G., 1998, COMPREHENSIVE BIOL C, V1, P119
[7]   Conformational Analyses of the Reaction Coordinate of Glycosidases [J].
Davies, Gideon J. ;
Planas, Antoni ;
Rovira, Carme .
ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (02) :308-316
[8]   Diastereoselective Simmons-Smith cyclopropanations of allylic amines and carbamates [J].
Davies, Stephen G. ;
Ling, Kenneth B. ;
Roberts, Paul M. ;
Russell, Angela J. ;
Thomson, James E. .
CHEMICAL COMMUNICATIONS, 2007, (39) :4029-4031
[9]   BONDING PROPERTIES OF CYCLOPROPANE AND THEIR CHEMICAL CONSEQUENCES [J].
DEMEIJERE, A .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1979, 18 (11) :809-826
[10]  
Fersht A., 1985, Enzyme Structure and Mechanism