Phosphoprotein analysis: from proteins to proteomes

被引:111
作者
Delom, Frederic [1 ]
Chevet, Eric
机构
[1] McGill Univ, Dept Surg, Montreal, PQ H3A 2T5, Canada
[2] McGill Univ, Montreal Proteom Network, Montreal, PQ, Canada
[3] McGill Univ, Dept Med, Montreal, PQ, Canada
[4] McGill Univ, Dept Anat, Montreal, PQ, Canada
关键词
D O I
10.1186/1477-5956-4-15
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Characterization of protein modification by phosphorylation is one of the major tasks that have to be accomplished in the post-genomic era. Phosphorylation is a key reversible modification occurring mainly on serine, threonine and tyrosine residues that can regulate enzymatic activity, subcellular localization, complex formation and degradation of proteins. The understanding of the regulatory role played by phosphorylation begins with the discovery and identification of phosphoproteins and then by determining how, where and when these phosphorylation events take place. Because phosphorylation is a dynamic process difficult to quantify, we must at first acquire an inventory of phosphoproteins and characterize their phosphorylation sites. Several experimental strategies can be used to explore the phosphorylation status of proteins from individual moieties to phosphoproteomes. In this review, we will examine and catalogue how proteomics techniques can be used to answer specific questions related to protein phosphorylation. Hence, we will discuss the different methods for enrichment of phospho-proteins and -peptides, and then the various technologies for their identification, quantitation and validation.
引用
收藏
页数:12
相关论文
共 110 条
[1]   Identification of phosphopeptides by chemical modification with an isotopic tag and ion trap mass spectrometry [J].
Adamczyk, M ;
Gebler, JC ;
Wu, J .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2002, 16 (10) :999-1001
[2]   DETERMINATION OF THE SITE OF TYROSINE PHOSPHORYLATION AT THE LOW PICOMOLE LEVEL BY AUTOMATED SOLID-PHASE SEQUENCE-ANALYSIS [J].
AEBERSOLD, R ;
WATTS, JD ;
MORRISON, HD ;
BURES, EJ .
ANALYTICAL BIOCHEMISTRY, 1991, 199 (01) :51-60
[3]   Protein tyrosine phosphatases in the human genome [J].
Alonso, A ;
Sasin, J ;
Bottini, N ;
Friedberg, I ;
Friedberg, I ;
Osterman, A ;
Godzik, A ;
Hunter, T ;
Dixon, J ;
Mustelin, T .
CELL, 2004, 117 (06) :699-711
[4]   ISOLATION OF PHOSPHOPROTEINS BY IMMOBILIZED METAL (FE-3+) AFFINITY-CHROMATOGRAPHY [J].
ANDERSSON, L ;
PORATH, J .
ANALYTICAL BIOCHEMISTRY, 1986, 154 (01) :250-254
[5]   A multidimensional electrospray MS-based approach to phosphopeptide mapping [J].
Annan, RS ;
Huddleston, MJ ;
Verma, R ;
Deshaies, RJ ;
Carr, SA .
ANALYTICAL CHEMISTRY, 2001, 73 (03) :393-404
[6]  
Arnott David, 2003, J Biomol Tech, V14, P205
[7]   Homogeneous assays for single-nucleotide polymorphism typing using AlphaScreen [J].
Beaudet, L ;
Bédard, J ;
Breton, B ;
Mercuri, RJ ;
Budarf, ML .
GENOME RESEARCH, 2001, 11 (04) :600-608
[8]   Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry [J].
Bennett, KL ;
Stensballe, A ;
Podtelejnikov, AV ;
Moniatte, M ;
Jensen, ON .
JOURNAL OF MASS SPECTROMETRY, 2002, 37 (02) :179-190
[9]   CONTRIBUTIONS OF MASS-SPECTROMETRY TO PEPTIDE AND PROTEIN-STRUCTURE [J].
BIEMANN, K .
BIOMEDICAL AND ENVIRONMENTAL MASS SPECTROMETRY, 1988, 16 (1-12) :99-111
[10]  
Blaukat Andree, 2004, Methods Mol Biol, V259, P283