Principal component analysis of interval data: a symbolic data analysis approach

被引:74
作者
Lauro, CN [1 ]
Palumbo, F
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Stat, Naples, Italy
[2] Univ Macerata, Dipartimento Istituz Econ & Finanziarie, Macerata, Italy
关键词
principal components; interval data; symbolic objects;
D O I
10.1007/s001800050038
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The present paper deals with the study of continuous interval data by means of suitable Principal Component Analyses (PCA). Statistical units described by interval data can be assumed as special cases of Symbolic Objects (SO) (Diday, 1987). In Symbolic Data Analysis (SDA), these data are represented as hypercubes. In the present paper, we propose some extensions of the PCA with the aim of representing, in a space of reduced dimensions, images of such hypercubes, pointing out differences and similarities according to their structural features.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 15 条
[1]  
BOCK HH, 2000, IN PRESS ANAL SYMBOL
[2]  
CAZES P, 1997, REV STAT APPL, V14, P5
[3]  
CHOUAKRIA A, 1998, KESDA 98
[4]  
DAMBRA L, 1982, RIV STAT APPL, V15, P51
[5]  
DECARVALHO FAT, 1997, IND FRENCH WORKSH SY
[6]  
DECARVALHO FAT, 1992, THESIS U PARIS DAUPH
[7]  
DIDAY E, 1987, JOURN SYMB NUM U PAR
[8]  
DIDAY E, 1996, INTRO ANAL DONNEES S
[9]  
Escofier B., 1988, ANAL FACTORIELLES MU
[10]  
GETTLERSUMMA M, 1997, APPL STOCASTIC MODEL, P299