Comonotonic bounds on the survival probabilities in the Lee-Carter model for mortality projection

被引:24
作者
Denuit, Michel [1 ]
Dhaene, Jan
机构
[1] Catholic Univ Louvain, Inst Sci Actuarielles, B-3000 Louvain, Belgium
[2] Catholic Univ Louvain, Ctr Risk & Insurance Studies, B-3000 Louvain, Belgium
关键词
mortality projection; comonotonicity; risk measure; stop-loss order;
D O I
10.1016/j.cam.2006.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Lee-Carter framework, future survival probabilities are random variables with an intricate distribution function. In large homogeneous portfolios of life annuities, value-at-risk or conditional tail expectation of the total yearly payout of the company are approximately equal to the corresponding quantities involving random survival probabilities. This paper aims to derive some bounds in the increasing convex (or stop-loss) sense on these random survival probabilities. These bounds are obtained with the help of comonotonic upper and lower bounds on sums of correlated random variables. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 15 条
[1]   A connection between supermodular ordering and positive/negative association [J].
Christofides, TC ;
Vaggelatou, E .
JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 88 (01) :138-151
[2]   Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts [J].
Dahl, M .
INSURANCE MATHEMATICS & ECONOMICS, 2004, 35 (01) :113-136
[3]  
Denuit M, 2005, ACTUARIAL THEORY FOR DEPENDENT RISKS: MEASURES, ORDERS AND MODELS, P1, DOI 10.1002/0470016450
[4]  
Denuit M, 2002, ANN APPL PROBAB, V12, P1174
[5]  
DENUIT M, 2005, 0515 U CATH LOUV
[6]   Comonotonic approximations for optimal portfolio selection problems [J].
Dhaene, J ;
Vanduffel, S ;
Goovaerts, MJ ;
Kaas, R ;
Vyncke, D .
JOURNAL OF RISK AND INSURANCE, 2005, 72 (02) :253-300
[7]   The concept of comonotonicity in actuarial science and finance: theory [J].
Dhaene, J ;
Denuit, A ;
Goovaerts, MJ ;
Kaas, R ;
Vyncke, D .
INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (01) :3-33
[8]   The concept of comonotonicity in actuarial science and finance: applications [J].
Dhaene, J ;
Denuit, M ;
Goovaerts, MJ ;
Kaas, R ;
Vyncke, D .
INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (02) :133-161
[9]  
Haberman S., 2004, N AM ACTUARIAL J, V8, P56, DOI DOI 10.1080/10920277.2004.10596137
[10]   Upper and lower bounds for sums of random variables [J].
Kaas, R ;
Dhaene, J ;
Goovaerts, MJ .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (02) :151-168