Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors

被引:704
作者
Tomizawa, M [1 ]
Casida, JE [1 ]
机构
[1] Univ Calif Berkeley, Environm Chem & Toxicol Lab, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
关键词
imidacloprid; neonicotinoid insecticides; nicotine; nicotinic acetylcholine receptor; molecular features conferring selectivity;
D O I
10.1146/annurev.ento.48.091801.112731
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid. (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped ("magic" nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.
引用
收藏
页码:339 / 364
页数:26
相关论文
共 163 条
[1]   Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors [J].
Arias, HR .
NEUROCHEMISTRY INTERNATIONAL, 2000, 36 (07) :595-645
[2]   Topology of ligand binding sites on the nicotinic acetylcholine receptor [J].
Arias, HR .
BRAIN RESEARCH REVIEWS, 1997, 25 (02) :133-191
[3]  
BADIO B, 1994, MOL PHARMACOL, V45, P563
[4]   ACTIONS OF IMIDACLOPRID AND A RELATED NITROMETHYLENE ON CHOLINERGIC RECEPTORS OF AN IDENTIFIED INSECT MOTOR-NEURON [J].
BAI, DL ;
LUMMIS, SCR ;
LEICHT, W ;
BREER, H ;
SATTELLE, DB .
PESTICIDE SCIENCE, 1991, 33 (02) :197-204
[5]   PHYSIOLOGICAL-PROPERTIES OF NEURONAL NICOTINIC RECEPTORS RECONSTITUTED FROM THE VERTEBRATE BETA-2 SUBUNIT AND DROSOPHILA ALPHA-SUBUNITS [J].
BERTRAND, D ;
BALLIVET, M ;
GOMEZ, M ;
BERTRAND, S ;
PHANNAVONG, B ;
GUNDELFINGER, ED .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1994, 6 (05) :869-875
[6]  
Boelle J, 1998, PESTIC SCI, V54, P304, DOI 10.1002/(SICI)1096-9063(1998110)54:3<304::AID-PS832>3.0.CO
[7]  
2-Z
[8]   CONSERVATION OF NEURAL NICOTINIC ACETYLCHOLINE-RECEPTORS FROM DROSOPHILA TO VERTEBRATE CENTRAL NERVOUS SYSTEMS [J].
BOSSY, B ;
BALLIVET, M ;
SPIERER, P .
EMBO JOURNAL, 1988, 7 (03) :611-618
[9]  
Buckingham SD, 1997, J EXP BIOL, V200, P2685
[10]   Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae) [J].
Cahill, M ;
Gorman, K ;
Day, S ;
Denholm, I ;
Elbert, A ;
Nauen, R .
BULLETIN OF ENTOMOLOGICAL RESEARCH, 1996, 86 (04) :343-349