Global atmospheric black carbon inferred from AERONET

被引:178
作者
Sato, M
Hansen, J [1 ]
Koch, D
Lacis, A
Ruedy, R
Dubovik, O
Holben, B
Chin, M
Novakov, T
机构
[1] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] Columbia Univ, Earth Inst, New York, NY 10025 USA
[3] SGT Inc, New York, NY 10025 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
aerosols; air pollution; climate change;
D O I
10.1073/pnas.0731897100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
AERONET, a network of well calibrated sunphotometers, provides data on aerosol optical depth and absorption optical depth at >250 sites around the world. The spectral range of AERONET allows discrimination between constituents that absorb most strongly in the UV region, such as soil dust and organic carbon, and the more ubiquitously absorbing black carbon (BC). AERONET locations, primarily continental, are not representative of the global mean, but they can be used to calibrate global aerosol climatologies produced by tracer transport models. We find that the amount of BC in current climatologies must be increased by a factor of 2-4 to yield best agreement with AERONET, in the approximation in which BC is externally mixed with other aerosols. The inferred climate forcing by BC, regardless of whether it is internally or externally mixed, is approximate to1 W/m(2), most of which is probably anthropogenic. This positive forcing (warming) by BC must substantially counterbalance cooling by anthropogenic reflective aerosols. Thus, especially if reflective aerosols such as sulfates are reduced, it is important to reduce BC to minimize global warming.
引用
收藏
页码:6319 / 6324
页数:6
相关论文
共 33 条
[1]  
[Anonymous], 1996, Intergovernmental Panel on Climate Change
[2]  
Bergstrom RW, 2002, J ATMOS SCI, V59, P567, DOI 10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO
[3]  
2
[4]   ABSORPTION OF SOLAR-RADIATION BY CLOUDS - OBSERVATIONS VERSUS MODELS [J].
CESS, RD ;
ZHANG, MH ;
MINNIS, P ;
CORSETTI, L ;
DUTTON, EG ;
FORGAN, BW ;
GARBER, DP ;
GATES, WL ;
HACK, JJ ;
HARRISON, EF ;
JING, X ;
KIEHL, JT ;
LONG, CN ;
MORCRETTE, JJ ;
POTTER, GL ;
RAMANATHAN, V ;
SUBASILAR, B ;
WHITLOCK, CH ;
YOUNG, DF ;
ZHOU, Y .
SCIENCE, 1995, 267 (5197) :496-499
[5]  
Chin M, 2002, J ATMOS SCI, V59, P461, DOI 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO
[6]  
2
[7]   EFFECT OF BLACK CARBON ON THE OPTICAL-PROPERTIES AND CLIMATE FORCING OF SULFATE AEROSOLS [J].
CHYLEK, P ;
VIDEEN, G ;
NGO, D ;
PINNICK, RG ;
KLETT, JD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D8) :16325-16332
[8]   ON THE VARIABILITY OF DESERT AEROSOL RADIATIVE CHARACTERISTICS [J].
DALMEIDA, GA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D3) :3017-3026
[9]   A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements [J].
Dubovik, O ;
King, MD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D16) :20673-20696
[10]  
Dubovik O, 2002, J ATMOS SCI, V59, P590, DOI 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO