Asymptotics for the SIMEX estimator in nonlinear measurement error models

被引:135
作者
Carroll, RJ
Kuchenhoff, H
Lombard, F
Stefanski, LA
机构
[1] UNIV MUNICH,SEMINAR OKONOMETRIE & STAT,D-80799 MUNICH,GERMANY
[2] RAND AFRIKAANS UNIV,JOHANNESBURG 2006,SOUTH AFRICA
[3] N CAROLINA STATE UNIV,RALEIGH,NC 27695
关键词
asymptotics; bootstrap; computationally intensive methods; measurement error models;
D O I
10.2307/2291401
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cook and Stefanski have described a computer-intensive method, the SIMEX method, for approximately consistent estimation in regression problems with additive measurement error. In this article we derive the asymptotic distribution of their estimators and show how to compute estimated standard errors. These standard error estimators can either be used alone or as prepivoting devices in a bootstrap analysis. We also give theoretical justification to some of the phenomena observed by Cook and Stefanski in their simulations.
引用
收藏
页码:242 / 250
页数:9
相关论文
共 12 条
[1]   MEASUREMENT ERROR, INSTRUMENTAL VARIABLES AND CORRECTIONS FOR ATTENUATION WITH APPLICATIONS TO METAANALYSES [J].
CARROLL, RJ ;
STEFANSKI, LA .
STATISTICS IN MEDICINE, 1994, 13 (12) :1265-1282
[2]  
CARROLL RJ, 1984, BIOMETRIKA, V71, P19, DOI 10.2307/2336392
[3]   APPROXIMATE QUASI-LIKELIHOOD ESTIMATION IN MODELS WITH SURROGATE PREDICTORS [J].
CARROLL, RJ ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (411) :652-663
[4]  
Carroll RJ., 1995, MEASUREMENT ERROR NO
[5]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[6]   REGRESSION-MODELS FOR DISCRETE LONGITUDINAL RESPONSES - COMMENT AND REJOINDER [J].
DRUM, M ;
MCCULLAGH, P ;
PRENTICE, RL ;
MANCL, LA ;
ZEGER, S ;
LIANG, KY ;
HEAGERTY, P ;
FITZMAURICE, G ;
LAIRD, NM ;
ROTNITSKY, AG .
STATISTICAL SCIENCE, 1993, 8 (03) :300-309
[7]  
Fuller W. A., 2009, Measurement error models
[8]  
Gleser LJ, 1990, STAT ANAL ERROR MEAS
[9]   THEORETICAL COMPARISON OF BOOTSTRAP CONFIDENCE-INTERVALS [J].
HALL, P .
ANNALS OF STATISTICS, 1988, 16 (03) :927-953
[10]   CORRECTION OF LOGISTIC-REGRESSION RELATIVE RISK ESTIMATES AND CONFIDENCE-INTERVALS FOR MEASUREMENT ERROR - THE CASE OF MULTIPLE COVARIATES MEASURED WITH ERROR [J].
ROSNER, B ;
SPIEGELMAN, D ;
WILLETT, WC .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1990, 132 (04) :734-745