Multiplicative updates for nonnegative quadratic programming

被引:133
作者
Sha, Fei [1 ]
Lin, Yuanqing
Saul, Lawrence K.
Lee, Daniel D.
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[3] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
关键词
D O I
10.1162/neco.2007.19.8.2004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-atigned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.
引用
收藏
页码:2004 / 2031
页数:28
相关论文
共 21 条
  • [1] IMAGE METHOD FOR EFFICIENTLY SIMULATING SMALL-ROOM ACOUSTICS
    ALLEN, JB
    BERKLEY, DA
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1979, 65 (04) : 943 - 950
  • [2] [Anonymous], P EUROSPEECH
  • [3] [Anonymous], 1998, P 15 INT C MACHINE L
  • [4] Bauer Eric., 1997, Proceedings of the 13th Conference on Uncertainty in Artifical Intelligence, P3
  • [5] Bertsekas D., 1999, NONLINEAR PROGRAMMIN
  • [6] Cristianini N., 2000, Intelligent Data Analysis: An Introduction
  • [7] GENERALIZED ITERATIVE SCALING FOR LOG-LINEAR MODELS
    DARROCH, JN
    RATCLIFF, D
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05): : 1470 - &
  • [8] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [9] Combined reconstruction of weak and strong lensing data with WSLAP
    Diego, J. M.
    Tegmark, M.
    Protopapas, P.
    Sandvik, H. B.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 375 (03) : 958 - 970
  • [10] Exponentiated gradient versus gradient descent for linear predictors
    Kivinen, J
    Warmuth, MK
    [J]. INFORMATION AND COMPUTATION, 1997, 132 (01) : 1 - 63