Pfaffian and Hafnian identities in shuffle algebras

被引:32
作者
Luque, JG [1 ]
Thibon, JY [1 ]
机构
[1] Univ Marne la Vallee, Inst Gaspard Monge, F-77454 Marne La Vallee 2, France
关键词
D O I
10.1016/S0196-8858(02)00036-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Chen's lemma on iterated integrals implies that certain identities involving multiple integrals, such as the de Bruijn and Wick formulas, amount to combinatorial identities for Pfaffians and Hafnians in shuffle algebras. We provide direct algebraic proofs of such shuffle identities, and obtain various generalizations. We also discuss some Pfaffian identities due to Sundquist and Ishikawa-Wakayama, and a Cauchy formula for anticommutative symmetric functions. Finally, we extend some of the previous considerations to hyper-Pfaffians and hyper-Hafnians. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:620 / 646
页数:27
相关论文
共 20 条
[1]  
[Anonymous], 1966, METHOD 2 QUANTIZATIO
[2]  
[Anonymous], 1995, LINEAR MULTILINEAR A, DOI DOI 10.1080/03081089508818403
[3]   NEW ALGORITHMS FOR LINEAR K-MATROID INTERSECTION AND MATROID K-PARITY PROBLEMS [J].
BARVINOK, AI .
MATHEMATICAL PROGRAMMING, 1995, 69 (03) :449-470
[4]  
BORWEIN JM, 1998, J COMBIN, V5
[6]  
CHEN KT, 1953, P LOND MATH SOC, V4, P502
[7]  
de Bruijn N. G., 1955, J. Indian Math. Soc., V19, P133, DOI DOI 10.18311/JIMS/1955/17010.31
[8]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[9]   MINOR SUMMATION FORMULA OF PFAFFIANS AND SCHUR FUNCTION IDENTITIES [J].
ISHIKAWA, M ;
WAKAYAMA, M .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (03) :54-57
[10]  
Ishikawa M, 2000, ADV STU P M, V28, P133