The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study

被引:323
作者
Kundu, Shankhamala [1 ]
Xia, Wei [1 ]
Busser, Wilma [1 ]
Becker, Michael [1 ]
Schmidt, Diedrich A.
Havenith, Martina
Muhler, Martin [1 ]
机构
[1] Ruhr Univ Bochum, Lab Ind Chem, D-44780 Bochum, Germany
关键词
OXIDATIVE DEHYDROGENATION; CATALYTIC-ACTIVITY; THERMAL-STABILITY; ACTIVATED CARBON; REDUCTION; CHEMISTRY; ADSORPTION; CO; HETEROATOMS; NANOFIBERS;
D O I
10.1039/b923651a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-containing functional groups were generated on the surface of partially oxidized multi-walled carbon nanotubes (CNTs) via post-treatment in ammonia. The treatment temperature was varied in order to tune the amount and type of nitrogen- and oxygen-containing functional groups, which were studied using high-resolution X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). The surface defects on CNTs due to the incorporation of nitrogen were investigated by Raman spectroscopy. Deconvoluted XP N1s spectra were used for the quanti. cation of different nitrogen-containing functional groups, and TPD studies were performed in inert and ammonia atmosphere to investigate the surface reactions occurring on the oxidized CNT surfaces quantitatively. Nitrile, lactam, imide and amine-type functional groups were formed in the presence of ammonia below 300 degrees C. When the OCNTs were treated in the medium temperature range between 300 degrees C to 500 degrees C, mainly pyridine-type nitrogen groups were generated, whereas pyridinic, pyrrolic and quaternary-type nitrogen groups were the dominating species present on the CNT surface when treated above 500 degrees C. It was found that about 38% of the oxygen functional groups react with ammonia below 500 degrees C.
引用
收藏
页码:4351 / 4359
页数:9
相关论文
共 41 条
  • [1] Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes
    Arrigo, Rosa
    Haevecker, Michael
    Schloegl, Robert
    Su, Dang Sheng
    [J]. CHEMICAL COMMUNICATIONS, 2008, (40) : 4891 - 4893
  • [2] A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction
    Bezerra, Cicero W. B.
    Zhang, Lei
    Lee, Kunchan
    Liu, Hansan
    Marques, Aldalea L. B.
    Marques, Edmar P.
    Wang, Haijiang
    Zhang, Jiujun
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (15) : 4937 - 4951
  • [3] PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation
    Chetty, Raghuram
    Kundu, Shankhamala
    Xia, Wei
    Bron, Michael
    Schuhmann, Wolfgang
    Chirila, Valentin
    Brandl, Waltraut
    Reinecke, Thomas
    Muhler, Martin
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (17) : 4208 - 4215
  • [4] Carbon nanofibers: Catalytic synthesis and applications
    De Jong, KP
    Geus, JW
    [J]. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2000, 42 (04): : 481 - 510
  • [5] Modification of the surface chemistry of activated carbons
    Figueiredo, JL
    Pereira, MFR
    Freitas, MMA
    Orfao, JJM
    [J]. CARBON, 1999, 37 (09) : 1379 - 1389
  • [6] Heteroatoms Increase the Selectivity in Oxidative Dehydrogenation Reactions on Nanocarbons
    Frank, Benjamin
    Zhang, Jian
    Blume, Raoul
    Schloegl, Robert
    Su, Dang Sheng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (37) : 6913 - 6917
  • [7] Decorating carbon nanotubes with metal or semiconductor nanoparticles
    Georgakilas, Vasilios
    Gournis, Dimitrios
    Tzitzios, Vasilios
    Pasquato, Lucia
    Guldi, Dirk M.
    Prato, Maurizio
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (26) : 2679 - 2694
  • [8] Regularities in the temperature-programmed desorption spectra of CO2 and CO from activated carbons
    Haydar, S
    Moreno-Castilla, C
    Ferro-García, MA
    Carrasco-Marín, F
    Rivera-Utrilla, J
    Perrard, A
    Joly, JP
    [J]. CARBON, 2000, 38 (09) : 1297 - 1308
  • [9] AMINATION AND AMMOXIDATION OF ACTIVATED CARBONS
    JANSEN, RJJ
    VANBEKKUM, H
    [J]. CARBON, 1994, 32 (08) : 1507 - 1516
  • [10] Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study
    Kundu, Shankhamala
    Wang, Yuemin
    Xia, Wei
    Muhler, Martin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (43) : 16869 - 16878