Nonparametric identification of controlled nonlinear time varying processes

被引:5
作者
Hilgert, N
Senoussi, R
Vila, JP
机构
[1] ENSAM, INRA, Lab Anal Syst & Biometrie, F-34060 Montpellier 1, France
[2] INRA, Lab Biometrie, F-84914 Avignon, France
关键词
autoregressive process; stabilization; nonparametric estimation; convolution kernels;
D O I
10.1137/S0363012998334456
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We are interested in the identification of an unknown time varying additive component of a controlled nonlinear autoregressive model, a problem of interest in the modeling and control of uncertain systems, such as those met in biotechnological processes. A kernel-based nonparametric estimator is proposed whose almost sure convergence is studied by means of a Lyapunov stabilizability assumption and laws of large numbers for martingales. We then adapt the general result to several classes of deterministic or random functional model uncertainties.
引用
收藏
页码:950 / 960
页数:11
相关论文
共 10 条
[1]  
BASTIN G, 1990, ON LINE ESTIMATION A
[2]  
BOSQ D, 1996, LECT NOTES STAT, V110
[3]  
DUFLO M., 1997, Random Iterative Models
[4]   NONPARAMETRIC SYSTEM-IDENTIFICATION BY KERNEL METHODS [J].
GEORGIEV, AA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (04) :356-358
[5]  
Hardle W., 1989, APPL NONPARAMETRIC R
[6]  
HERNANDEZLERMA O, 1988, DENSITY ESTIMATION A
[7]  
PORTIER B, 1992, THESIS U PARIS SUD P
[8]   NONPARAMETRIC IDENTIFICATION OF QUASI-STATIONARY SYSTEMS [J].
RUTKOWSKI, L .
SYSTEMS & CONTROL LETTERS, 1985, 6 (01) :33-35
[9]  
SENOUSSI R, 1991, THESIS U PARIS SUD P
[10]   RECURSIVE ESTIMATES OF PROBABILITY DENSITIES [J].
WOLVERTON, CT ;
WAGNER, TJ .
IEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICS, 1969, SSC5 (03) :246-+