Nearly minimum redundant correlator interpolation formula for gravitational wave chirp detection

被引:7
作者
Croce, RP [1 ]
Demma, T
Pierro, V
Pinto, IM
Postiglione, F
机构
[1] Univ Salerno, DI3E, Wavesgrp, I-84100 Salerno, Italy
[2] Univ Sannio Benevento, Wavesgrp, Benevento, Italy
关键词
D O I
10.1103/PhysRevD.62.124020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An absolute lower bound on the number of templates needed to keep the fitting factor above a prescribed minimal value Gamma in correlator-bank detection of (Newtonian) gravitational wave chirps from unknown inspiraling compact binary stars is derived, resorting to the theory of quasi-band-limited functions in the L-infinity norm. An explicit nearly minimum redundant cardinal-interpolation formula for the (reduced, noncoherent) correlator is introduced. Its computational burden and statistical properties are compared to those of the plain lattice of (reduced, noncoherent) correlators, for the same Gamma. An extension to post-Newtonian models is outlined.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1929, Proc. Math. Soc. Edinburgh
[2]   SEARCH TEMPLATES FOR GRAVITATIONAL-WAVES FROM PRECESSING, INSPIRALING BINARIES [J].
APOSTOLATOS, TA .
PHYSICAL REVIEW D, 1995, 52 (02) :605-620
[3]   Construction of a template family for the detection of gravitational waves from coalescing binaries [J].
Apostolatos, TA .
PHYSICAL REVIEW D, 1996, 54 (04) :2421-2437
[4]  
BLANCHET L, 1998, GRAVITATIONAL WAVE D
[5]  
CROCE RP, 1999, P 2 TAMA WORKSH TOK
[6]  
Dewey D., 1986, THESIS MIT
[7]   CHOICE OF FILTERS FOR THE DETECTION OF GRAVITATIONAL-WAVES FROM COALESCING BINARIES .2. DETECTION IN COLORED NOISE [J].
DHURANDHAR, SV ;
SATHYAPRAKASH, BS .
PHYSICAL REVIEW D, 1994, 49 (04) :1707-1722
[8]   Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase approximation to the Fourier transform [J].
Droz, S ;
Knapp, DJ ;
Poisson, E ;
Owen, BJ .
PHYSICAL REVIEW D, 1999, 59 (12)
[9]  
Helstrom C. W., 1968, STAT THEORY SIGNAL D
[10]  
Higgins J.R., 1996, SAMPLING THEORY FOUR