We propose in this note a simple model-the two-state Worm Like Chain-to describe the elasticity of the recently discovered stress-induced transformation from B-DNA to S-DNA. The model reduces for low tractions to the well-known Worm Like chain theory, which is used to describe the elastic properties of B-DNA, while in the limit of high chain-bending moduli it reduces to the two-stale Ising model proposed by Cluzel et al. for the B-S transition [Cluzel, P., A. Lebrun, C. Heller, R. Lavery, J-L. Viovy, D. Chatenay, and F. Caron. 1996. DNA: an extensible molecule. Science. 271:792-794]. Our model can be treated analytically to produce an explicit form of the force-extension relationship which agrees reasonably with the observations. We use the model to show that conformational fluctuations of the chain play a role also for the B to S transformation.