Simple and fast linear space computation of longest common subsequences

被引:15
作者
Rick, C [1 ]
机构
[1] Univ Bonn, Inst Informat 4, D-53117 Bonn, Germany
关键词
algorithms; longest common subsequence; linear space;
D O I
10.1016/S0020-0190(00)00114-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The longest common subsequence (LCS) problem is to find a sequence of greatest largest possible length that can be obtained from two sequences, A = a1a2...am and B = b1b2...bn, where m≤n, by deleting zero or more, not necessarily adjacent, symbols. It is shown how to maintain the O(min{pm,p(n-p)}) time complexity and linear space algorithm. All linear space implementations rely on variations of a divide and conquer sequence.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 13 条
[1]  
Apostolico A., 1985, Proceedings of the Twenty-third Annual Allerton Conference on Communication, Control, and Computing, P76
[2]   FAST LINEAR-SPACE COMPUTATIONS OF LONGEST COMMON SUBSEQUENCES [J].
APOSTOLICO, A ;
BROWNE, S ;
GUERRA, C .
THEORETICAL COMPUTER SCIENCE, 1992, 92 (01) :3-17
[3]  
Apostolico A., 1997, HDB FORMAL LANGUAGES, P361, DOI DOI 10.1007/978-3-662-07675-0_8
[4]  
Goeman H., 1999, Proceedings of the Prague Stringology Club Workshop '99, P40
[5]  
Hirschberg Daniel S., 1997, PATTERN MATCHING ALG, P123
[6]   ALGORITHMS FOR LONGEST COMMON SUBSEQUENCE PROBLEM [J].
HIRSCHBERG, DS .
JOURNAL OF THE ACM, 1977, 24 (04) :664-675
[7]   LINEAR SPACE ALGORITHM FOR COMPUTING MAXIMAL COMMON SUBSEQUENCES [J].
HIRSCHBERG, DS .
COMMUNICATIONS OF THE ACM, 1975, 18 (06) :341-343
[8]  
KUMAR SK, 1987, ACTA INFORM, V24, P353, DOI 10.1007/BF00265993
[9]   An O(ND) Difference Algorithm and Its Variations [J].
Myers, Eugene W. .
ALGORITHMICA, 1986, 1 (1-4) :251-266
[10]   OPTIMAL ALIGNMENTS IN LINEAR-SPACE [J].
MYERS, EW ;
MILLER, W .
COMPUTER APPLICATIONS IN THE BIOSCIENCES, 1988, 4 (01) :11-17